不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)
闲话
看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼
如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?!
还是要想点办法,不失一般性也能快捷地判定决策单调。
对于判定决策单调的分析
再补一句决策单调性的概念:状态转移方程形如\(f_i=\min/\max_{j=1}^{i-1} g_j+w_{i,j}\),且记\(f_i\)的最优决策点为\(p_i\)(也就是\(f_i\)从\(g_{p_i}+w_{i,p_i}\)处转移最优)若满足\(p_i\le p_{i+1}\),则该方程满足决策单调性。(摘自蒟蒻的DP优化总结)
显然每个决策\(j\)可以用一个关于\(i\)的函数\(f_j(i)\)表示。
函数的一个重要思想:数形结合!
光靠脑子想不到规律,只好先举一些用语言难以描述的反例。我们的函数不能这样


看到这里Dalao们有没有一点想法呢?蒟蒻反正想到了一点——两个函数必须只有一个交点!在这一点之前一个函数更优,而之后就被永远取代了。
感觉满足条件的函数其实很少,分类讨论一下(如有误欢迎Dalao指教)
直线
显然上面的基本要求都满足。不过要是函数是直线的话都可以用斜率优化搞了(\(k_1x+b_1\ge k_2x+b_2,x\ge\frac{b_2-b_1}{k_1-k_2}\))。
不是直线
为了避免图1的尴尬情况,可能需要所有决策函数之间可以通过平移相互变换(形如\(f_j(x)=f_k(x-a)+b\))。
为了避免图2的尴尬情况,可能需要函数的导函数在各自的定义域内单调递增/递减(注意是导函数不是原函数)。
接着,根据蒟蒻肝过的几个题,好像还有一条规律——
如果导函数递增、求最大值(柠檬),或者导函数递减、求最小值,要用单调栈。
如果导函数递增、求最小值(本题),或者导函数递减、求最大值(Lightning Conductor),要用单调队列。
复杂的函数
蒟蒻见过这一道(Yet another minimization problem)
感觉可以看成对于每一种数都有一个函数\(\frac{(c_i-c_j)(c_i-c_j+1)}{2}\),单看这一个是满足决策单调性的(\(c_i\ge c_j\),定义域内的导函数是递增的)。
那么总函数就可以写成\(f_j(i)=g_j+\sum\frac{(c_i-c_j)(c_i-c_j+1)}{2}\),怎么看也不像是不满足决策单调性的。
本题的思路
那么就可以回归本题了。
设\(len_i\)为第\(i\)句的长度,\(s_i=i+\sum\limits_{j=1}^i len_j\)(加上\(i\)是默认一句话后面有空格)
设\(f_i\)为选前\(i\)句的最小代价,我们枚举当前这一行填入最后面的多少个句子,注意行末没有空格,长度要\(-1\),那么有方程
\]
容易发现后面这一坨决策函数是关于直线\(x=s_j+1+L\)对称的。把它去绝对值,变成两段,显然左边一段和右边一段的导函数都是递增的,左边恒\(<0\),右边恒\(>0\)。又因为这函数是连续的,所以当然整个函数的导函数也单调递增咯!
用队列维护决策二分栈的过程不再赘述,总结里也有。时间复杂度\(O(Tn\log n)\)
看到Dalao们都记录了一个三元组,可蒟蒻还是觉得没啥必要啊。。。只要保存队列中相邻两个元素的临界值\(k\)就好了吧。
一个写法技巧:
二分决策\(x,y(x<y)\)的临界值的时候,左端点设成\(x\)就好了,没必要设成\(1\)(难怪蒟蒻之前写Lightning Conductor跑得有点慢)
三个坑点:
不管是转移还是输出,都要去掉行末的空格(怪蒟蒻看题不清)
当答案大于\(10^{18}\)的时候开longlong也炸了,所以要用实数以牺牲精度的代价换来更大的值域。然而double真的WA了。于是要开long double。
cmath的pow太慢了容易TLE,要手写快速幂。
#include<cstdio>
#include<cmath>
#include<cstring>
#define RG register
#define R RG int
#define G c=getchar()
#define Calc(i,j) f[j]+qpow(abs(s[i]-s[j]-L))//计算函数值
using namespace std;
typedef long double LD;//开long double
const int N=1e5+9;
int n,L,P,s[N],q[N],k[N],pr[N];
LD f[N];
char str[N][33];
inline int in(){
RG char G;
while(c<'-')G;
R x=c&15;G;
while(c>'-')x*=10,x+=c&15,G;
return x;
}
inline LD qpow(RG LD b){//自己写快速幂
RG LD a=1;
for(R k=P;k;k>>=1,b*=b)
if(k&1)a*=b;
return a;
}
inline int bound(R x,R y){//二分临界值
R l=x,r=n+1,m;//左端点设为x减小常数
while(l<r){
m=(l+r)>>1;
Calc(m,x)>=Calc(m,y)?r=m:l=m+1;
}
return l;
}
int main(){
R T=in(),i,h,t;
while(T--){
n=in();L=in()+1;P=in();//把L处理了一下
for(i=1;i<=n;++i){
if(scanf("%s",str[i]));
s[i]=s[i-1]+strlen(str[i])+1;//记前缀和
}
for(q[i=h=t=1]=0;i<=n;++i){
while(h<t&&k[h]<=i)++h;
f[i]=Calc(i,q[h]);pr[i]=q[h];//记录转移位置方便输出方案
while(h<t&&k[t-1]>=bound(q[t],i))--t;
k[t]=bound(q[t],i);q[++t]=i;
}
if(f[n]>1e18)puts("Too hard to arrange");
else{
printf("%.0Lf\n",f[n]);
for(q[t=0]=i=n;i;q[++t]=i=pr[i]);
for(;t;--t){
for(i=q[t]+1;i<q[t-1];++i)
printf("%s ",str[i]);
puts(str[i]);//行末不要搞空格
}
}
puts("--------------------");
}
return 0;
}
不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)的更多相关文章
- 洛谷P1912 [NOI2009]诗人小G(决策单调性)
传送门 题解 决策单调性是个啥……导函数是个啥……这题解讲的是啥……我是个啥…… //minamoto #include<iostream> #include<cstdio> ...
- [NOI2009]诗人小G --- DP + 决策单调性
[NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
- BZOJ1563 NOI2009 诗人小G【决策单调性优化DP】
LINK 因为是图片题就懒得挂了 简要题意:有n个串,拼接两个串需要加一个空格,给你l和p,问你拼接后每个串的总长减l的绝对值的p次方的最小值 首先打表发现一下这题是决策单调的对于所有数据都成立就当他 ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- [bzoj1563][NOI2009]诗人小G(决策单调性优化)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1563 分析: 首先可得朴素的方程:f[i]=min{f[j]+|s[j]-j-s[i] ...
- [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)
模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...
- BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)
题意 题目链接 Sol 很显然的一个dp方程 \(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\) 其中\(sum_i = \sum_{j = 1}^i len ...
- P1912-[NOI2009]诗人小G【四边形不等式,单调队列】
正题 题目链接:https://www.luogu.com.cn/problem/P1912 题目大意 给出\(n\)个字符串,把这些字符串依次用空格(算一个长度)连接分成若干段,若一段长度为\(x\ ...
随机推荐
- UVA1626 - Brackets sequence(区间DP--括号匹配+递归打印)
题目描写叙述: 定义合法的括号序列例如以下: 1 空序列是一个合法的序列 2 假设S是合法的序列.则(S)和[S]也是合法的序列 3 假设A和B是合法的序列.则AB也是合法的序列 比如:以下的都是合法 ...
- OpenStack中的虚拟机(/dev/mapper/centos-root)进行磁盘扩容
一.虚拟机上先扩展分区: 二.centos系统root登入,新建分区 2.1 [fdisk -l] 最大分区为/dev/sda2,说明新创建的分区将会是sda3(在后面的步骤会进行选择) 2.2 输入 ...
- 11.10 (下午)开课二个月零六天(ajax验证用户名,ajax调数据库)
用ajax验证用户名是否可用 testuid.php <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN&quo ...
- Timer计时不准确的问题及解决方法
在项目中,需要每隔20ms发送一个RTP数据包.一开始使用的是System.Windows.Forms下的Timer类,但是发现明显延迟了.用StopWatch测了一下,发现它的触发间隔居然不是20m ...
- Ubuntu16.04下使用rdesktop命令远程连接windows机器
前段时间在本机安装了ubuntu16.04桌面版,后来需要远程连接一台win10系统的跳转机,下面介绍使用rdesktop命令远程连接windows机器的操作记录:1)首先安装rdesktop工具 k ...
- Mysql主从同步(1) - 概念和原理介绍 以及 主从/主主模式 部署记录
Mysql复制概念Mysql内建的复制功能是构建大型高性能应用程序的基础, 将Mysql数据分布到多个系统上,这种分布机制是通过将Mysql某一台主机数据复制到其它主机(slaves)上,并重新执行一 ...
- 微信扫描 安卓和ios 不会
wx.ready(function(){ $('#scan').click(function(){ wx.scanQRCode({ needResult: 1, // 默认为0,扫描结果由微信处理,1 ...
- 1013 C. Photo of The Sky
传送门 [http://codeforces.com/contest/1013/problem/C] 题意 输入一个n代表n颗星星,输入2n个数,其中任意两个数代表一颗行星的坐标,问你把n个星星围起来 ...
- 第三个spring冲刺第1天
在第二阶段,我们的要实现的基本功能都已经基本是实现了,现在在第三阶段,我们会完善算法的改进.容错问题的兼容还有附加的其他功能,例如计时等
- 总结 推广app
扫一扫二维码即可安装使用我们的app,方便快捷. 电脑端下载地址:http://pan.baidu.com/s/1bocWPPX http://a.app.qq.com/o/simple.jsp?pk ...