【题解】Atcoder ARC#96 F-Sweet Alchemy
首先,我们发现每一个节点所选择的次数不好直接算,因为要求一个节点被选择的次数大于等于父亲被选择的次数,且又要小于等于父亲被选择的次数 \(+D\)。既然如此,考虑一棵差分的树,规定每一个节点被选择的次数为 \(x\),表示节点实际上被选择的次数是父亲被选择的次数 \(+x\)。显然,这个 \(x\) 是小于等于 \(D\) 的。分析这样我们发现,选择了一个节点实际上对应子树内的所有节点的选择次数均增加,所以我们重新定义选择一个节点的价值为子树内(含自身)节点的个数,而代价则是子树内所有代价的总和(含自身)。
问题转化为:在一棵树上有不超过 \(50\) 个节点,每个节点均有一个权值及一个代价,除\(1\) 号节点外每个节点选择的次数均不能超过 \(D\)。求在总代价不超过 \(x\) 的前提下,如何使权值最大化?
想到这里我就懵逼了。乍一看背包,然而代价的范围过大,根本不可能实现。突破口只有非常小的 \(n\) 的范围了。想了很久也不会,看题解。还是非常强的。
在最开始学背包的时候,会有一个错误的想法:对于权值为 \(v_{i}\),代价为 \(w_{i}\) 的若干物品,我们计算出它们的性价比,贪心的选择其中性价比高的部分物品。这样之所以是错的,是由于物品不能分割,这样会有空闲的地方出现但又不能塞入更好的物品了。于是我们考虑:在什么样的情况下可以直接用性价比高的物品代替性价比低的物品呢?
考虑两个物品 \(v_{i}, w_{i}\) 和 \(v_{j}, w_{j}\),其中 \(\frac{v_{i}}{w_{i}} > \frac{v_{j}}{w_{j}}\) 即 \(i\) 物品的性价比高于 \(j\)。如果我们选择了 \(v_{i}\) 个物品 \(j\) ,不如直接更换成 \(v_{j}\) 个物品 \(i\)。这样权值是相等的,都是 \(v_{i}*v_{j}\),但代价却更小:\(v_{j} * w_{i} < v_{i} * w_{j} \)。由此我们知道:在可以选择性价比更高的物品却没有选择的情况下,性价比低的物品最多选择 \(v_{i} - 1\) 个。而这个 \(v\) 的范围是很小的,所以我们可以对于每一种物品都从其中拿出 \(min(n, D)\) 件来进行多重背包,剩下的贪心即可。
#include <bits/stdc++.h>
using namespace std;
#define maxn 55
#define maxm 125005
#define int long long
#define INF 1e9 + 10
int n, X, D, ans, cnt, dp[maxm];
int w[maxn], val[maxn], pos[maxn];
int tot, V[maxn * maxn], W[maxn * maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct edge
{
int cnp, to[maxn], last[maxn], head[maxn];
edge() { cnp = ; }
void add(int u, int v)
{ to[cnp] = v, last[cnp] = head[u], head[u] = cnp ++; }
}E1; void dfs(int u)
{
val[u] = ;
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
dfs(v);
w[u] += w[v]; val[u] += val[v];
}
cnt += val[u] * n; pos[u] = u;
} bool cmp(int x, int y) { return val[x] * w[y] > val[y] * w[x]; }
void Get_min(int &x, int y) { x = x < y ? x : y; } signed main()
{
n = read(), X = read(), D = read();
w[] = read();
for(int i = ; i <= n; i ++)
{
w[i] = read(); int x = read();
E1.add(x, i);
}
dfs();
sort(pos + , pos + n + , cmp);
int tmp = min(n, D);
for(int i = ; i <= cnt; i ++) dp[i] = INF;
for(int i = ; i <= n; i ++)
{
int len = , lim = tmp;
while(lim >= len)
{
V[++ tot] = len * val[pos[i]];
W[tot] = len * w[pos[i]];
lim -= len, len <<= ;
}
if(lim) V[++ tot] = lim * val[pos[i]], W[tot] = lim * w[pos[i]];
}
for(int i = ; i <= tot; i ++)
for(int j = cnt; ~j; j --)
if(j >= V[i]) Get_min(dp[j], dp[j - V[i]] + W[i]); // k件物品
int ans = ;
for(int i = ; i <= cnt; i ++)
{
if(dp[i] > X) continue;
int ret = i, left = X - dp[i];
for(int j = ; j <= n; j ++)
{
int tem = pos[j], used = min(max(D - n, 0LL), left / w[tem]);
if(tem == ) used = left / w[tem];
left -= w[tem] * used;
ret += val[tem] * used;
}
ans = max(ans, ret);
}
printf("%lld\n", ans);
return ;
}
【题解】Atcoder ARC#96 F-Sweet Alchemy的更多相关文章
- 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)
题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...
- [题解] Atcoder ARC 142 D Deterministic Placing 结论,DP
题目 (可能有点长,但是请耐心看完,个人认为比官方题解好懂:P) 首先需要注意,对于任意节点i上的一个棋子,如果在一种走法中它走到了节点j,另一种走法中它走到了节点k,那么这两种走法进行完后,棋子占据 ...
- [题解] Atcoder ARC 142 E Pairing Wizards 最小割
题目 建图很妙,不会. 考虑每一对要求合法的巫师(x,y),他们两个的\(a\)必须都大于\(min(b_x,b_y)\).所以在输入的时候,如果\(a_x\)或者\(a_y\)小于\(min(b_x ...
- *AtCoder Regular Contest 096F - Sweet Alchemy
$n \leq 50$的树,每个点有权值,现要选点(可多次选一个点)使点数尽量多,如下限制:选的总权值不超过$C \leq 1e9$:$c_i$表示$i$选的次数,$p_i$表示$i$的父亲,那么$c ...
- [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学
题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...
- [atcoder contest 010] F - Tree Game
[atcoder contest 010] F - Tree Game Time limit : 2sec / Memory limit : 256MB Score : 1600 points Pro ...
- Atcoder Regular Contest 096 D - Sweet Alchemy(贪心+多重背包)
洛谷题面传送门 & Atcoder 题面传送门 由于再过 1h 就是 NOI 笔试了所以题解写得会略有点简略. 考虑差分,记 \(b_i=c_i-c_{fa_i}\),那么根据题意有 \(b_ ...
- [题解] Atcoder Regular Contest ARC 147 A B C D E 题解
点我看题 A - Max Mod Min 非常诈骗.一开始以为要观察什么神奇的性质,后来发现直接模拟就行了.可以证明总操作次数是\(O(nlog a_i)\)的.具体就是,每次操作都会有一个数a被b取 ...
- 【题解】Atcoder ARC#90 F-Number of Digits
Atcoder刷不动的每日一题... 首先注意到一个事实:随着 \(l, r\) 的增大,\(f(r) - f(l)\) 会越来越小.考虑暴力处理出小数据的情况,我们可以发现对于左端点 \(f(l) ...
随机推荐
- Linux教程--基础命令
本教程适用于已经有Linux基础的同学们来一起学习哦!(环境:实验楼(https://www.shiyanlou.com/)) 有趣的Linux命令:Banner 一.安装 sudo apt-get ...
- python 取值方法:截取字符串
截取最后三位:aa=“TFR20171230001-1”cc=aa[-3]+aa[-2]+aa[-1] aa="1.36x36.8-ddr" bb=aa.split('x')[1] ...
- 用JavaDoc生成项目文档
项目到了尾声,大家都开始头疼——又要写文档了……是的,我们大多数人都不是从正规的Programer训练出来的.当初学习编程序的时候,就从来没有想过要给自己写的那几个程序编写一份完整的文档,所有的注释都 ...
- ElasticSearch5.5.1插件分类
ElasticSearch5.5.1插件分类 附官网介绍:https://www.elastic.co/guide/en/elasticsearch/plugins/5.5/intro.html 一. ...
- tomcat相关配置技巧梳理 (修改站点目录、多项目部署、限制ip访问、大文件上传超时等)
tomcat常用架构:1)nginx+tomcat:即前端放一台nginx,然后通过nginx反向代理到tomcat端口(可参考:分享一例测试环境下nginx+tomcat的视频业务部署记录)2)to ...
- nginx try_files 详解
server { listen ; server_name localhost; index index.html index.htm index.php; root /data/wwwroot; l ...
- NOIP模拟赛20180917 隐藏题目
给定n个数,值域范围1~n,每个数都不同,求满足所有相邻数不同的排列数.\(n\le 30\). 状压DP很好想,然而我考试时没写出来.对于排列还是有很多转化方法.另外要注意数据范围.
- [BUAA软工]第1次阅读
[BUAA软工]第1次阅读 本次作业所属课程: 2019BUAA软件工程 本次作业要求: 第1次个人作业 我在本课程的目标 熟悉和实践软件工程流程,适应团队开发 本次作业的帮助 帮助理解<构建之 ...
- let命令和块级作用域
学习了阮一峰老师的ES6,http://es6.ruanyifeng.com/,收益良多. 一.let命令1.概念:let命令用于声明变量,和var类似,但是使用let命令所声明的变量只有在该变量所在 ...
- iOS开发设计多个target
创建target有两种方式, 1>.是通过新建target可以通过File-->New-->Target,然后选择其中一个模板来创建,app类型的target进行创建 2>.另 ...