PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS
There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.
The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.
When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.
The above figure illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3, we have 2 different shortest paths:
PBMC -> S1 -> S3. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3, so that both stations will be in perfect conditions.
PBMC -> S2 -> S3. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.
Input Specification:
Each input file contains one test case. For each case, the first line contains 4 numbers: Cmax (≤100), always an even number, is the maximum capacity of each station; N (≤500), the total number of stations; Sp, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers Ci (i=1,⋯,N) where each Ci is the current number of bikes at Si respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and Tij which describe the time Tij taken to move betwen stations Si and Sj. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0−>S1−>⋯−>Sp. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of Sp is adjusted to perfect.
Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge's data guarantee that such a path is unique.
Sample Input:
10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1
Sample Output:
3 0->2->3 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <queue>
#include <string>
#include <set>
#include <map>
using namespace std;
const int maxn = , inf = ;
int cmax, n, sp, m;
int g[maxn][maxn], c[maxn] = { };
vector<int> pre[maxn];
int d[maxn];
bool vis[maxn];
void dijkstra(int s) {
fill(vis, vis + maxn, false);
fill(d, d + maxn, inf);
d[s] = ;
for (int i = ; i <= n; i++) {
int u = -, min = inf;
for (int j = ; j < n; j++) {
if (vis[j] == false && d[j] < min) {
min = d[j];
u = j;
}
}
if (u == -) return;
vis[u] = true;
for (int v = ; v <= n; v++) {
if (vis[v] == false && g[u][v]!=inf) {
if (d[v] > d[u] + g[u][v]) {
d[v] = d[u] + g[u][v];
pre[v].clear();
pre[v].push_back(u);
}
else if (d[v] == d[u] + g[u][v]) {
pre[v].push_back(u);
}
}
}
}
}
vector<int> shortpath, temppath;
int min_c = inf, min_t = inf;
void dfs(int v) {
if (v == ) {
temppath.push_back(v);
int s;
int carry = , take = ;
for (int i = temppath.size() - ; i >= ;i--) {
s = temppath[i];
if (cmax / < c[s]) {
take += c[s] - (cmax / );
}
else {
carry = carry + max(, cmax / - c[s] - take);
take = max(, take - (cmax / - c[s]));
}
}
if (carry < min_c || (carry==min_c && take<min_t)) {
min_c = carry;
shortpath = temppath;
min_t = take;
}
temppath.pop_back();
return;
}
temppath.push_back(v);
for (int i = ; i < pre[v].size(); i++) {
dfs(pre[v][i]);
}
temppath.pop_back();
}
int main() {
cin >> cmax >> n >> sp >> m;
for (int i = ; i <= n; i++) {
scanf("%d", &c[i]);
}
fill(g[], g[] + maxn * maxn, inf);
for (int i = ; i < m; i++) {
int c1, c2, w;
scanf("%d %d %d", &c1, &c2, &w);
g[c1][c2] = w;
g[c2][c1] = w;
}
dijkstra();
dfs(sp);
printf("%d ", min_c);
for (int i = shortpath.size() - ; i > ; i--) {
printf("%d->", shortpath[i]);
}
printf("%d %d\n",shortpath[], min_t); system("pause");
return ;
}
注意点:还是一道逻辑看似简单的题,考察一个多尺度最短路径。知道用dijkstra+dfs的方法最方便,就是死不相信想只用dijkstra做出来,发现真的不行,当带的车一样多时,最后带回来的车要最少,这个光用dijkstra是算不出来的,因为中间要尽可能多的带车出来,但最后要最少,如果中间带少的车出来,最后需要带的车又会太多。还是老老实实用dijkstra+dfs最方便。一定要把这个模板记住熟练了!
PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS的更多相关文章
- PAT 甲级 1018 Public Bike Management (30 分)(dijstra+dfs,dfs记录路径,做了两天)
1018 Public Bike Management (30 分) There is a public bike service in Hangzhou City which provides ...
- 1018 Public Bike Management (30 分)
There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...
- 1018 Public Bike Management (30分) 思路分析 + 满分代码
题目 There is a public bike service in Hangzhou City which provides great convenience to the tourists ...
- 1018 Public Bike Management (30分) PAT甲级真题 dijkstra + dfs
前言: 本题是我在浏览了柳神的代码后,记下的一次半转载式笔记,不经感叹柳神的强大orz,这里给出柳神的题解地址:https://blog.csdn.net/liuchuo/article/detail ...
- 【PAT甲级】1018 Public Bike Management (30 分)(SPFA,DFS)
题意: 输入四个正整数C,N,S,M(c<=100,n<=500),分别表示每个自行车站的最大容量,车站个数,此次行动的终点站以及接下来的M行输入即通路.接下来输入一行N个正整数表示每个自 ...
- [PAT] A1018 Public Bike Management
[思路] 题目生词 figure n. 数字 v. 认为,认定:计算:是……重要部分 The stations are represented by vertices and the roads co ...
- 1018 Public Bike Management (30分) (迪杰斯特拉+dfs)
思路就是dijkstra找出最短路,dfs比较每一个最短路. dijkstra可以找出每个点的前一个点, 所以dfs搜索比较的时候怎么处理携带和带走的数量就是关键,考虑到这个携带和带走和路径顺序有关, ...
- PAT 1018 Public Bike Management[难]
链接:https://www.nowcoder.com/questionTerminal/4b20ed271e864f06ab77a984e71c090f来源:牛客网PAT 1018 Public ...
- PAT 1018 Public Bike Management(Dijkstra 最短路)
1018. Public Bike Management (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...
随机推荐
- elasticsearch6.7 05. Document APIs(7)Update By Query API
6.Update By Query API _update_by_query 接口可以在不改变 source 的情况下对 index 中的每个文档进行更新.这对于获取新属性或其他联机映射更改很有用.以 ...
- 【Java并发编程】20、DelayQueue实现订单的定时取消
当订单定时取消需要修改数据库订单状态,但是怎么确定订单什么时候应该改变状态,解决方案有下面两种: 第一种,写个定时器去每分钟扫描数据库,这样更新及时,但是如果数据库数据量大的话,会对数据库造成很大的压 ...
- Docker 轻量级图形管理软件 Portainer
安装 docker swarm :https://www.cnblogs.com/klvchen/p/9437758.html portainer 集群启动 docker volume create ...
- 【代码笔记】Web-HTML-标题
一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...
- 【工具相关】Web-XAMPP的安装
一,在查度中搜索XAMPP,会如下所示,下载软件 ,依次进行安装. 二,安装完成之后,会生成如下的图标. 三,打开上图的图标,如下图所示. 四,选择Apache Web Server---->S ...
- 【读书笔记】iOS-Web应用程序的自动化测试
seleniumHQ:https://github.com/seleniumhq/selenium Appium:https://github.com/appium/appium 参考资料:<i ...
- eclipse没有server选项解决方法
eclipse是是一个开放源代码的.基于Java的可扩展开发平台.就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境. 它使用频率十分高,然而当使用它配置weblogic的时候,经常 ...
- Kotlin入门(16)容器的遍历方式
Kotlin号称全面兼容Java,于是乎Java的容器类仍可在Kotlin中正常使用,包括大家熟悉的队列ArrayList.映射HashMap等等.不过Kotlin作为一门全新的语言,肯定还是要有自己 ...
- PowerDesin把name复制到Comment,把Comment复制到Name
PowerDesin把name复制到Comment,把Comment复制到Name的方法: PowerDesigner->Tools->Execute Commands->Edit/ ...
- Jenkins 自动发布 Spring Boot 项目(Gitee)
1.下载 wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war,并部署到tomcat下 2.机器安装好 java ,maven ,g ...