PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS
There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.
The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.
When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.
The above figure illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3, we have 2 different shortest paths:
PBMC -> S1 -> S3. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3, so that both stations will be in perfect conditions.
PBMC -> S2 -> S3. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.
Input Specification:
Each input file contains one test case. For each case, the first line contains 4 numbers: Cmax (≤100), always an even number, is the maximum capacity of each station; N (≤500), the total number of stations; Sp, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers Ci (i=1,⋯,N) where each Ci is the current number of bikes at Si respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and Tij which describe the time Tij taken to move betwen stations Si and Sj. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0−>S1−>⋯−>Sp. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of Sp is adjusted to perfect.
Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge's data guarantee that such a path is unique.
Sample Input:
10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1
Sample Output:
3 0->2->3 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <queue>
#include <string>
#include <set>
#include <map>
using namespace std;
const int maxn = , inf = ;
int cmax, n, sp, m;
int g[maxn][maxn], c[maxn] = { };
vector<int> pre[maxn];
int d[maxn];
bool vis[maxn];
void dijkstra(int s) {
fill(vis, vis + maxn, false);
fill(d, d + maxn, inf);
d[s] = ;
for (int i = ; i <= n; i++) {
int u = -, min = inf;
for (int j = ; j < n; j++) {
if (vis[j] == false && d[j] < min) {
min = d[j];
u = j;
}
}
if (u == -) return;
vis[u] = true;
for (int v = ; v <= n; v++) {
if (vis[v] == false && g[u][v]!=inf) {
if (d[v] > d[u] + g[u][v]) {
d[v] = d[u] + g[u][v];
pre[v].clear();
pre[v].push_back(u);
}
else if (d[v] == d[u] + g[u][v]) {
pre[v].push_back(u);
}
}
}
}
}
vector<int> shortpath, temppath;
int min_c = inf, min_t = inf;
void dfs(int v) {
if (v == ) {
temppath.push_back(v);
int s;
int carry = , take = ;
for (int i = temppath.size() - ; i >= ;i--) {
s = temppath[i];
if (cmax / < c[s]) {
take += c[s] - (cmax / );
}
else {
carry = carry + max(, cmax / - c[s] - take);
take = max(, take - (cmax / - c[s]));
}
}
if (carry < min_c || (carry==min_c && take<min_t)) {
min_c = carry;
shortpath = temppath;
min_t = take;
}
temppath.pop_back();
return;
}
temppath.push_back(v);
for (int i = ; i < pre[v].size(); i++) {
dfs(pre[v][i]);
}
temppath.pop_back();
}
int main() {
cin >> cmax >> n >> sp >> m;
for (int i = ; i <= n; i++) {
scanf("%d", &c[i]);
}
fill(g[], g[] + maxn * maxn, inf);
for (int i = ; i < m; i++) {
int c1, c2, w;
scanf("%d %d %d", &c1, &c2, &w);
g[c1][c2] = w;
g[c2][c1] = w;
}
dijkstra();
dfs(sp);
printf("%d ", min_c);
for (int i = shortpath.size() - ; i > ; i--) {
printf("%d->", shortpath[i]);
}
printf("%d %d\n",shortpath[], min_t); system("pause");
return ;
}
注意点:还是一道逻辑看似简单的题,考察一个多尺度最短路径。知道用dijkstra+dfs的方法最方便,就是死不相信想只用dijkstra做出来,发现真的不行,当带的车一样多时,最后带回来的车要最少,这个光用dijkstra是算不出来的,因为中间要尽可能多的带车出来,但最后要最少,如果中间带少的车出来,最后需要带的车又会太多。还是老老实实用dijkstra+dfs最方便。一定要把这个模板记住熟练了!
PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS的更多相关文章
- PAT 甲级 1018 Public Bike Management (30 分)(dijstra+dfs,dfs记录路径,做了两天)
1018 Public Bike Management (30 分) There is a public bike service in Hangzhou City which provides ...
- 1018 Public Bike Management (30 分)
There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...
- 1018 Public Bike Management (30分) 思路分析 + 满分代码
题目 There is a public bike service in Hangzhou City which provides great convenience to the tourists ...
- 1018 Public Bike Management (30分) PAT甲级真题 dijkstra + dfs
前言: 本题是我在浏览了柳神的代码后,记下的一次半转载式笔记,不经感叹柳神的强大orz,这里给出柳神的题解地址:https://blog.csdn.net/liuchuo/article/detail ...
- 【PAT甲级】1018 Public Bike Management (30 分)(SPFA,DFS)
题意: 输入四个正整数C,N,S,M(c<=100,n<=500),分别表示每个自行车站的最大容量,车站个数,此次行动的终点站以及接下来的M行输入即通路.接下来输入一行N个正整数表示每个自 ...
- [PAT] A1018 Public Bike Management
[思路] 题目生词 figure n. 数字 v. 认为,认定:计算:是……重要部分 The stations are represented by vertices and the roads co ...
- 1018 Public Bike Management (30分) (迪杰斯特拉+dfs)
思路就是dijkstra找出最短路,dfs比较每一个最短路. dijkstra可以找出每个点的前一个点, 所以dfs搜索比较的时候怎么处理携带和带走的数量就是关键,考虑到这个携带和带走和路径顺序有关, ...
- PAT 1018 Public Bike Management[难]
链接:https://www.nowcoder.com/questionTerminal/4b20ed271e864f06ab77a984e71c090f来源:牛客网PAT 1018 Public ...
- PAT 1018 Public Bike Management(Dijkstra 最短路)
1018. Public Bike Management (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...
随机推荐
- 转载 基于JAVA每月运势api调用代码实例
代码描述:基于JAVA每月运势api调用代码实例 接口地址:http://www.juhe.cn/docs/api/id/58 原文链接:http://outofmemory.cn/code-snip ...
- pom.xml复制过来的代码报错-Maven expected START_TAG or END_TAG not TEXT (positionTEXT se
场景 编译器:IDEA 在网上看一些小实例,跟着做的时候会复制pom.xml文件的代码来加载依赖包.首先需要确定你复制过来的代码本身是没有错的,在复制一些pom.xml文件代码时,有时候会报错.原因是 ...
- C# Why does '+' + a short convert to 44
I have a line of code that looks like this: MyObject.PhoneNumber = '+' + ThePhonePrefix + TheBizNumb ...
- php 对象转数组
//参考网上 但是别人给的方法有错误的地方public function eleme_callback(){ $res = (object) array('1' => 'foo'); $data ...
- Python 映射
python中的反射功能是由以下四个内置函数提供:hasattr.getattr.setattr.delattr,改四个函数分别用于对对象内部执行:检查是否含有某成员.获取成员.设置成员.删除成员. ...
- wepy里面两种不同的写回调函数的方法
方案一const getHelpCenter = createAction(GET_HELP_CENTER, () => request('api/hisense/article/menu/li ...
- 【代码笔记】Web-ionic单选框
一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...
- 【读书笔记】iOS-storyboard-两个场景间的切换(二)
接着上一节 一,在storybord画布上面,新增加一个场景,即拖动一个View Controller到画布上面,同时建立一个button,名字为secondButton.如图所示. 二,点击第一个按 ...
- 慕学在线网0.3_四个model
1.四个model完整代码: # users/models.py from datetime import datetime from django.db import models from dja ...
- GPU与CPU的区别
作者:虫子君 链接:https://www.zhihu.com/question/19903344/answer/96081382 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...