There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.

The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.

When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.

The above figure illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S​3​​, we have 2 different shortest paths:

  1. PBMC -> S​1​​ -> S​3​​. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S​1​​ and then take 5 bikes to S​3​​, so that both stations will be in perfect conditions.

  2. PBMC -> S​2​​ -> S​3​​. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.

Input Specification:

Each input file contains one test case. For each case, the first line contains 4 numbers: C​max​​ (≤100), always an even number, is the maximum capacity of each station; N (≤500), the total number of stations; S​p​​, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers C​i​​ (i=1,⋯,N) where each C​i​​ is the current number of bikes at S​i​​ respectively. Then M lines follow, each contains 3 numbers: S​i​​, S​j​​, and T​ij​​ which describe the time T​ij​​ taken to move betwen stations S​i​​ and S​j​​. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0−>S​1​​−>⋯−>S​p​​. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of S​p​​ is adjusted to perfect.

Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge's data guarantee that such a path is unique.

Sample Input:

10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1

Sample Output:

3 0->2->3 0

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <queue>
#include <string>
#include <set>
#include <map>
using namespace std;
const int maxn = , inf = ;
int cmax, n, sp, m;
int g[maxn][maxn], c[maxn] = { };
vector<int> pre[maxn];
int d[maxn];
bool vis[maxn];
void dijkstra(int s) {
fill(vis, vis + maxn, false);
fill(d, d + maxn, inf);
d[s] = ;
for (int i = ; i <= n; i++) {
int u = -, min = inf;
for (int j = ; j < n; j++) {
if (vis[j] == false && d[j] < min) {
min = d[j];
u = j;
}
}
if (u == -) return;
vis[u] = true;
for (int v = ; v <= n; v++) {
if (vis[v] == false && g[u][v]!=inf) {
if (d[v] > d[u] + g[u][v]) {
d[v] = d[u] + g[u][v];
pre[v].clear();
pre[v].push_back(u);
}
else if (d[v] == d[u] + g[u][v]) {
pre[v].push_back(u);
}
}
}
}
}
vector<int> shortpath, temppath;
int min_c = inf, min_t = inf;
void dfs(int v) {
if (v == ) {
temppath.push_back(v);
int s;
int carry = , take = ;
for (int i = temppath.size() - ; i >= ;i--) {
s = temppath[i];
if (cmax / < c[s]) {
take += c[s] - (cmax / );
}
else {
carry = carry + max(, cmax / - c[s] - take);
take = max(, take - (cmax / - c[s]));
}
}
if (carry < min_c || (carry==min_c && take<min_t)) {
min_c = carry;
shortpath = temppath;
min_t = take;
}
temppath.pop_back();
return;
}
temppath.push_back(v);
for (int i = ; i < pre[v].size(); i++) {
dfs(pre[v][i]);
}
temppath.pop_back();
}
int main() {
cin >> cmax >> n >> sp >> m;
for (int i = ; i <= n; i++) {
scanf("%d", &c[i]);
}
fill(g[], g[] + maxn * maxn, inf);
for (int i = ; i < m; i++) {
int c1, c2, w;
scanf("%d %d %d", &c1, &c2, &w);
g[c1][c2] = w;
g[c2][c1] = w;
}
dijkstra();
dfs(sp);
printf("%d ", min_c);
for (int i = shortpath.size() - ; i > ; i--) {
printf("%d->", shortpath[i]);
}
printf("%d %d\n",shortpath[], min_t); system("pause");
return ;
}

注意点:还是一道逻辑看似简单的题,考察一个多尺度最短路径。知道用dijkstra+dfs的方法最方便,就是死不相信想只用dijkstra做出来,发现真的不行,当带的车一样多时,最后带回来的车要最少,这个光用dijkstra是算不出来的,因为中间要尽可能多的带车出来,但最后要最少,如果中间带少的车出来,最后需要带的车又会太多。还是老老实实用dijkstra+dfs最方便。一定要把这个模板记住熟练了!

PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS的更多相关文章

  1. PAT 甲级 1018 Public Bike Management (30 分)(dijstra+dfs,dfs记录路径,做了两天)

    1018 Public Bike Management (30 分)   There is a public bike service in Hangzhou City which provides ...

  2. 1018 Public Bike Management (30 分)

    There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...

  3. 1018 Public Bike Management (30分) 思路分析 + 满分代码

    题目 There is a public bike service in Hangzhou City which provides great convenience to the tourists ...

  4. 1018 Public Bike Management (30分) PAT甲级真题 dijkstra + dfs

    前言: 本题是我在浏览了柳神的代码后,记下的一次半转载式笔记,不经感叹柳神的强大orz,这里给出柳神的题解地址:https://blog.csdn.net/liuchuo/article/detail ...

  5. 【PAT甲级】1018 Public Bike Management (30 分)(SPFA,DFS)

    题意: 输入四个正整数C,N,S,M(c<=100,n<=500),分别表示每个自行车站的最大容量,车站个数,此次行动的终点站以及接下来的M行输入即通路.接下来输入一行N个正整数表示每个自 ...

  6. [PAT] A1018 Public Bike Management

    [思路] 题目生词 figure n. 数字 v. 认为,认定:计算:是……重要部分 The stations are represented by vertices and the roads co ...

  7. 1018 Public Bike Management (30分) (迪杰斯特拉+dfs)

    思路就是dijkstra找出最短路,dfs比较每一个最短路. dijkstra可以找出每个点的前一个点, 所以dfs搜索比较的时候怎么处理携带和带走的数量就是关键,考虑到这个携带和带走和路径顺序有关, ...

  8. PAT 1018 Public Bike Management[难]

    链接:https://www.nowcoder.com/questionTerminal/4b20ed271e864f06ab77a984e71c090f来源:牛客网PAT 1018  Public ...

  9. PAT 1018 Public Bike Management(Dijkstra 最短路)

    1018. Public Bike Management (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...

随机推荐

  1. 【Tomcat】压力测试和优化

    一.采用jmeter进行测试 为什么使用jmeter, 它免费开源, 不断发展, 功能逐渐强大. 可以做功能,负载, 性能测试.一套脚本可以同时用于功能和性能测试.Jmeter 有着众多的插件开发者, ...

  2. 文件夹生成zip

    package com.leoodata.utils; import java.io.*; import java.util.zip.ZipEntry; import java.util.zip.Zi ...

  3. 正则与python的re模块

    一.正则表达式的语法 正则表达式使用反斜杠字符('\')来表示特殊的形式或者来允许使用特殊的字符而不要启用它们特殊的含义.这与字符串字面值中相同目的的相同字符的用法冲突:例如,要匹配一个反斜线字面值, ...

  4. vue2.0 element-ui中的el-select选择器无法显示选中的内容

    我使用的是element-ui V2.2.3.代码如下,当我选择值得时候,el-select选择器无法显示选中的内容,但是能触发change方法,并且能输出选择的值. select.vue文件 < ...

  5. Salesforce小知识:在简档中设置Visualforce页面的权限

    简档(Profile)中的 Visualforce 页面访问权限 在Salesforce中,对于自定义的简档,可以设置"Visualforce 页面访问"的权限. Visualfo ...

  6. 腾讯X5WebView集成及在移动端中使用

    工作中经常涉及H5网页的加载工作,最多使用的就是安卓系统控件WebView,但是当网页内容比较多的时候,需要等待很久才能加载完,加载完后用户才能看到网页中的内容,这样用户需要等很久,体验很差. 那能不 ...

  7. Expo大作战(三十七)--expo sdk api之 GLView,GestureHandler,Font,Fingerprint,DeviceMotion,Brightness

    简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...

  8. TERADATA数据库操作

    1.创建一个数据库的命令举例: ,spool; 注释:该命令创建了一个测试数据库testbase,其永久表空间为200mb,spool空间不能超过100mb.在teradata数据库系统的缺省方式下, ...

  9. python第四天 三级菜单新思路

    今天是一个坎,在做三级菜单时卡住了,因为想要简洁的代码,就要用到递归函数,卡的不要不要的!不过最后在同学老师的提点帮助下,还是解决了! 2017-5-10发现之前的代码有BUG今天 修改了! 作业要求 ...

  10. python编程的简洁代码

    1.列表间元素操作 L1 = [1,3,5,]L2 = [2,5,3,1,8]x = set(L1)y = set(L2)#差集print(y - x)#交集print(y&x)#并集prin ...