PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS
There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.
The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.
When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.
The above figure illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3, we have 2 different shortest paths:
PBMC -> S1 -> S3. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3, so that both stations will be in perfect conditions.
PBMC -> S2 -> S3. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.
Input Specification:
Each input file contains one test case. For each case, the first line contains 4 numbers: Cmax (≤100), always an even number, is the maximum capacity of each station; N (≤500), the total number of stations; Sp, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers Ci (i=1,⋯,N) where each Ci is the current number of bikes at Si respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and Tij which describe the time Tij taken to move betwen stations Si and Sj. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0−>S1−>⋯−>Sp. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of Sp is adjusted to perfect.
Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge's data guarantee that such a path is unique.
Sample Input:
10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1
Sample Output:
3 0->2->3 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <queue>
#include <string>
#include <set>
#include <map>
using namespace std;
const int maxn = , inf = ;
int cmax, n, sp, m;
int g[maxn][maxn], c[maxn] = { };
vector<int> pre[maxn];
int d[maxn];
bool vis[maxn];
void dijkstra(int s) {
fill(vis, vis + maxn, false);
fill(d, d + maxn, inf);
d[s] = ;
for (int i = ; i <= n; i++) {
int u = -, min = inf;
for (int j = ; j < n; j++) {
if (vis[j] == false && d[j] < min) {
min = d[j];
u = j;
}
}
if (u == -) return;
vis[u] = true;
for (int v = ; v <= n; v++) {
if (vis[v] == false && g[u][v]!=inf) {
if (d[v] > d[u] + g[u][v]) {
d[v] = d[u] + g[u][v];
pre[v].clear();
pre[v].push_back(u);
}
else if (d[v] == d[u] + g[u][v]) {
pre[v].push_back(u);
}
}
}
}
}
vector<int> shortpath, temppath;
int min_c = inf, min_t = inf;
void dfs(int v) {
if (v == ) {
temppath.push_back(v);
int s;
int carry = , take = ;
for (int i = temppath.size() - ; i >= ;i--) {
s = temppath[i];
if (cmax / < c[s]) {
take += c[s] - (cmax / );
}
else {
carry = carry + max(, cmax / - c[s] - take);
take = max(, take - (cmax / - c[s]));
}
}
if (carry < min_c || (carry==min_c && take<min_t)) {
min_c = carry;
shortpath = temppath;
min_t = take;
}
temppath.pop_back();
return;
}
temppath.push_back(v);
for (int i = ; i < pre[v].size(); i++) {
dfs(pre[v][i]);
}
temppath.pop_back();
}
int main() {
cin >> cmax >> n >> sp >> m;
for (int i = ; i <= n; i++) {
scanf("%d", &c[i]);
}
fill(g[], g[] + maxn * maxn, inf);
for (int i = ; i < m; i++) {
int c1, c2, w;
scanf("%d %d %d", &c1, &c2, &w);
g[c1][c2] = w;
g[c2][c1] = w;
}
dijkstra();
dfs(sp);
printf("%d ", min_c);
for (int i = shortpath.size() - ; i > ; i--) {
printf("%d->", shortpath[i]);
}
printf("%d %d\n",shortpath[], min_t); system("pause");
return ;
}
注意点:还是一道逻辑看似简单的题,考察一个多尺度最短路径。知道用dijkstra+dfs的方法最方便,就是死不相信想只用dijkstra做出来,发现真的不行,当带的车一样多时,最后带回来的车要最少,这个光用dijkstra是算不出来的,因为中间要尽可能多的带车出来,但最后要最少,如果中间带少的车出来,最后需要带的车又会太多。还是老老实实用dijkstra+dfs最方便。一定要把这个模板记住熟练了!
PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS的更多相关文章
- PAT 甲级 1018 Public Bike Management (30 分)(dijstra+dfs,dfs记录路径,做了两天)
1018 Public Bike Management (30 分) There is a public bike service in Hangzhou City which provides ...
- 1018 Public Bike Management (30 分)
There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...
- 1018 Public Bike Management (30分) 思路分析 + 满分代码
题目 There is a public bike service in Hangzhou City which provides great convenience to the tourists ...
- 1018 Public Bike Management (30分) PAT甲级真题 dijkstra + dfs
前言: 本题是我在浏览了柳神的代码后,记下的一次半转载式笔记,不经感叹柳神的强大orz,这里给出柳神的题解地址:https://blog.csdn.net/liuchuo/article/detail ...
- 【PAT甲级】1018 Public Bike Management (30 分)(SPFA,DFS)
题意: 输入四个正整数C,N,S,M(c<=100,n<=500),分别表示每个自行车站的最大容量,车站个数,此次行动的终点站以及接下来的M行输入即通路.接下来输入一行N个正整数表示每个自 ...
- [PAT] A1018 Public Bike Management
[思路] 题目生词 figure n. 数字 v. 认为,认定:计算:是……重要部分 The stations are represented by vertices and the roads co ...
- 1018 Public Bike Management (30分) (迪杰斯特拉+dfs)
思路就是dijkstra找出最短路,dfs比较每一个最短路. dijkstra可以找出每个点的前一个点, 所以dfs搜索比较的时候怎么处理携带和带走的数量就是关键,考虑到这个携带和带走和路径顺序有关, ...
- PAT 1018 Public Bike Management[难]
链接:https://www.nowcoder.com/questionTerminal/4b20ed271e864f06ab77a984e71c090f来源:牛客网PAT 1018 Public ...
- PAT 1018 Public Bike Management(Dijkstra 最短路)
1018. Public Bike Management (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...
随机推荐
- potplayer打开多个视频文件
选项-基本-多重处理方式-新开一个播放进程播放
- 【读书笔记】iOS-UI Automation 需要遵守的规则
1,被测试的应用程序必须是Developer签名的应用程序或者是运行在模拟器里面的应用程序. 2,在被测试的应用程序开发的过程中需要处理UI控件的可访问性.使用IB的开发工程师需要在XIB中加入一个A ...
- 使用bootstrap的JS插件实现模态框效果
在上一篇文章中,我们使用 js+css 实现了模态框效果,在理解了模态框的基本实现方法和实现效果后,我们就要寻找更快捷的方法,又快又好的来完成模态框开发需求,从而节约时间,提高效率.一个好的轮子,不仅 ...
- 卷积神经网络CNNs的理解与体会
https://blog.csdn.net/shijing_0214/article/details/53143393 孔子说过,温故而知新,时隔俩月再重看CNNs,当时不太了解的地方,又有了新的理解 ...
- Git应用—02各种冲突场景处理(转载)
Git冲突与解决方法 https://www.cnblogs.com/gavincoder/p/9071959.html https://www.liaoxuefeng.com/wiki/001373 ...
- 性能测试 Apache参数配置与性能调优
Apache性能调优 by:授客 QQ:1033553122 环境: Apache 2.4 1.选择合适的MPM(Multi -Processing Modules, 多处理模块) Unix/Linu ...
- redis 在Linux下的安装与配置
redis在Linux下的安装与配置 by:授客 QQ:1033553122 测试环境 redis-3.0.7.tar.gz 下载地址: http://redis.io/download http: ...
- loadrunner 脚本开发-执行操作系统命令
脚本开发-执行操作系统命令 by:授客 QQ:1033553122 思路: 用loadrunner system()函数 函数原型: int system( const char *string ); ...
- PopupWindow 弹出时背景变暗
下面的PopupWindow 的高是相对于屏幕高设计,宽是获取的某一个控件的宽设置,位置位于某控件的上方,红色部分是设置弹出时屏幕变暗的. //设置contentView View contentV ...
- JavaScript大杂烩1 - 理解JavaScript的类型系统
随着硬件水平的逐渐提高,浏览器的处理能力越来越强大,本人坚信,客户端会越来越瘦,瘦到只用浏览器就够了,服务端会越来越丰满:虽然很多大型的程序,比如3D软件,客户端仍然会存在,但是未来的主流必将是浏览器 ...