as_matrix、保存训练模型
#-*- coding: utf-8 -*-
#构建并测试CART决策树模型 import pandas as pd #导入数据分析库
from random import shuffle #导入随机函数shuffle,用来打乱数据
import matplotlib.pyplot as plt #导入Matplotlib datafile = '../data/model.xls' #数据名
data = pd.read_excel(datafile) #读取数据,数据的前三列是特征,第四列是标签
#print(data)
# 电量趋势下降指标 线损指标 告警类指标 是否窃漏电
# 0 4 1 1 1
# 1 4 0 4 1
# 2 2 1 1 1
# 3 9 0 0 0
data = data.as_matrix() #将表格转换为矩阵
#print(data)
# [[4 1 1 1]
# [4 0 4 1]
# [2 1 1 1]
shuffle(data) #随机打乱数据 p = 0.8 #设置训练数据比例
train = data[:int(len(data)*p),:] #前80%为训练集
test = data[int(len(data)*p):,:] #后20%为测试集 #构建CART决策树模型
from sklearn.tree import DecisionTreeClassifier #导入决策树模型 treefile = '../tmp/tree.pkl' #模型输出名字
tree = DecisionTreeClassifier() #建立决策树模型
tree.fit(train[:,:3], train[:,3]) #训练 #保存模型
from sklearn.externals import joblib
joblib.dump(tree, treefile) # from cm_plot import * #导入自行编写的混淆矩阵可视化函数
# cm_plot(train[:,3], tree.predict(train[:,:3])).show() #显示混淆矩阵可视化结果
#注意到Scikit-Learn使用predict方法直接给出预测结果。 from sklearn.metrics import roc_curve #导入ROC曲线函数 fpr, tpr, thresholds = roc_curve(test[:,3], tree.predict_proba(test[:,:3])[:,1], pos_label=1)
plt.plot(fpr, tpr, linewidth=2, label = 'ROC of CART', color = 'green') #作出ROC曲线
plt.xlabel('False Positive Rate') #坐标轴标签
plt.ylabel('True Positive Rate') #坐标轴标签
plt.ylim(0,1.05) #边界范围
plt.xlim(0,1.05) #边界范围
plt.legend(loc=4) #图例
plt.show() #显示作图结果
as_matrix、保存训练模型的更多相关文章
- tensorflow 保存训练模型ckpt 查看ckpt文件中的变量名和对应值
TensorFlow 模型保存与恢复 一个快速完整的教程,以保存和恢复Tensorflow模型. 在本教程中,我将会解释: TensorFlow模型是什么样的? 如何保存TensorFlow模型? 如 ...
- Tensorflow 保存和载入训练过程
本节涉及点: 保存训练过程 载入保存的训练过程并继续训练 通过命令行参数控制是否强制重新开始训练 训练过程中的手动保存 保存训练过程前,程序征得同意 一.保存训练过程 以下方代码为例: import ...
- JS做深度学习2——导入训练模型
JS做深度学习2--导入训练模型 改进项目 前段时间,我做了个RNN预测金融数据的毕业设计(华尔街),当时TensorFlow.js还没有发布,我不得已使用了keras对数据进行了训练,并且拟合好了不 ...
- Keras 学习之旅(一)
软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK ...
- 用TensorFlow教你手写字识别
博主原文链接:用TensorFlow教你做手写字识别(准确率94.09%) 如需转载,请备注出处及链接,谢谢. 2012 年,Alex Krizhevsky, Geoff Hinton, and Il ...
- 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”
来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...
- 初识spark的MLP模型
初识Spark的MLP模型 1. MLP介绍 Multi-layer Perceptron(MLP),即多层感知器,是一个前馈式的.具有监督的人工神经网络结构.通过多层感知器可包含多个隐藏层,实现对非 ...
- 用Keras搞一个阅读理解机器人
catalogue . 训练集 . 数据预处理 . 神经网络模型设计(对话集 <-> 问题集) . 神经网络模型设计(问题集 <-> 回答集) . RNN神经网络 . 训练 . ...
- TensorFlow下利用MNIST训练模型识别手写数字
本文将参考TensorFlow中文社区官方文档使用mnist数据集训练一个多层卷积神经网络(LeNet5网络),并利用所训练的模型识别自己手写数字. 训练MNIST数据集,并保存训练模型 # Pyth ...
随机推荐
- 617. Merge Two Binary Trees
https://www.cnblogs.com/grandyang/p/7058935.html class Solution { public: TreeNode* mergeTrees(TreeN ...
- 基于SaaS的企业数据隐私保护平台
导读 WireWheel成立于2016年,总部位于华盛顿,该公司致力于降低数据隐私保护合规能力建设的难度,帮助企业来应对复杂.严厉的法案.条例规定.2018年10月,公司获得了PSP Growth领投 ...
- sql截取日期/时间的单独部分,比如年、月、日、小时、分钟等等
可以使用EXTRACT() 函数.(oracle和mysql都有该函数) 语法: EXTRACT(unit FROM date) date 参数是合法的日期表达式.unit 参数可以是下列的值:YEA ...
- nginx-haproxy-lvs功能和性能对比 nginx - max-fail + 调度算法
优点(性能和功能两方面分析) 缺点 lvs 工作在4层,可以对http,MySQL等服务负载均衡.负责流量的分发,对io,cpu,mem的消耗少 功能比较少,没有正则匹配的功能 nginx 工作在7层 ...
- 在TerraExplorer中如何批量根据shape多边形对象创建TerrainModify对象?
其实,在Skyline中TerrainModify对象就是一个特殊类型Polygon对象,他们的Geometry是可以直接交换使用的: <!DOCTYPE html PUBLIC "- ...
- AutoMapper自动映射
十年河东,十年河西,莫欺少年穷. 学无止境,精益求精. 不扯犊子,直接进入正题: AutoMapper自动映射常用于EF中,能很好的解决DTO和Model之间相互映射的问题.在未使用AutoMappe ...
- 【php增删改查实例】第十二节 - 数据删除功能
1.单条数据删除 思路:首先,需要也只能允许用户勾选一条数据,然后弹出一个确认框,问用户是否真的要删除?如果是,就把ID传递到PHP,然后写一个delete语句,通过ID去删除即可. 画好了按钮之后, ...
- openhtmltopdf 支持自定义字体、粗体
一.支持自定义字体 private static void renderPDF(String html, OutputStream outputStream) throws Exception { t ...
- .Net并行编程(一)-TPL之数据并行
前言 许多个人计算机和工作站都有多个CPU核心,可以同时执行多个线程.利用硬件的特性,使用并行化代码以在多个处理器之间分配工作. 应用场景 文件批量上传 并行上传单个文件.也可以把一个文件拆成几段分开 ...
- eclipse添加maven环境
一.打开eclipse,选择Window->preference,如下图所示 二.Maven-> installation->add,见下图: 三.选择Directory,选择mav ...