P2885 [USACO07NOV]电话线Telephone Wire

最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线。 新的电话线架设在已有的N(2 <= N <= 100,000)根电话线杆上, 第i根电话线杆的高度为height_i米(1 <= height_i <= 100)。电话线总是从一根电话线杆的顶端被引到相邻的那根的顶端 如果这两根电话线杆的高度不同,那么FJ就必须为此支付 C*电话线杆高度差(1 <= C <= 100)的费用。当然,你不能移动电话线杆,只能按原有的顺序在相邻杆间架设电话线。Farmer John认为 加高某些电话线杆能减少架设电话线的总花费,尽管这项工作也需要支出一定的费用。更准确地,如果他把一根电话线杆加高X米的话,他得为此付出X^2的费用。请你帮Farmer John计算一下,如果合理地进行这两种工作,他最少要在这个电话线改造工程上花多少钱。

Solution

设计dp状态为 \(dp[i][j]\) 表示考虑前 \(i\) 个柱子, 并且将第 \(i\) 个柱子的高度改造为 \(j\) 的最小花费

容易想出 \(dp\) 方程: $$dp[i][j] = min(dp[i - 1][k] + (j - h[i])^{2} + |j - k| * c)$$

复杂度 \(O(nC_{2})\)

考虑优化

发现绝对值比较难处理

我们先把无关 \(k\) 的值提出来, 分类讨论处理一下绝对值

\[dp[i][j] = min(dp[i - 1][k] - c * k) + (j - h[i])^{2} + c * j\ \ \ (j \geq k)
\]

\[dp[i][j] = min(dp[i - 1][k] + c * k) + (j - h[i])^{2} - c * j\ \ \ (j \leq k)
\]

然后 \(min\) 里可以用一个变量维护

处理绝对值分别正序倒叙枚举即可

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(LL i = (x);i <= (y);i++)
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const LL maxn = 200019, inf = 0xfffffffffffffff;
LL num, c, h[maxn];
LL dp[maxn][119];
LL maxx;
void init(){
num = RD(), c = RD();
REP(i, 1, num)h[i] = RD(), maxx = max(maxx, h[i]);
REP(i, 0, num)REP(j, 0, maxx)dp[i][j] = inf;
}
void solve(){
REP(i, h[1], maxx)dp[1][i] = (h[1] - i) * (h[1] - i);
REP(i, 2, num){
LL minn = inf;
REP(j, h[i - 1], maxx){
minn = min(minn, dp[i - 1][j] - j * c);
if(j < h[i])continue;
LL add = (j - h[i]) * (j - h[i]);
dp[i][j] = min(dp[i][j], minn + add + j * c);
}
minn = inf;
for(int j = maxx;j >= h[i];j--){
minn = min(minn, dp[i - 1][j] + j * c);
LL add = (j - h[i]) * (j - h[i]);
dp[i][j] = min(dp[i][j], minn + add - j * c);
}
}
LL ans = inf;
REP(i, h[num], maxx)ans = min(ans, dp[num][i]);
printf("%lld\n", ans);
}
int main(){
init();
solve();
return 0;
}

P2885 [USACO07NOV]电话线Telephone Wire的更多相关文章

  1. P2885 [USACO07NOV]电话线Telephone Wire——Chemist

    题目: https://www.luogu.org/problemnew/show/P2885 由于把每一根电线杆增加多少高度不确定,所以很难直接通过某种方法算出答案,考虑动态规划. 状态:f [ i ...

  2. [USACO07NOV]电话线Telephone Wire

    [USACO07NOV]电话线Telephone Wire 时间限制: 1 Sec  内存限制: 128 MB 题目描述 电信公司要更换某个城市的网线.新网线架设在原有的 N(2 <= N &l ...

  3. [luoguP2885] [USACO07NOV]电话线Telephone Wire(DP + 贪心)

    传送门 真是诡异. 首先 O(n * 100 * 100) 三重循环 f[i][j] 表示到第 i 个柱子,高度是 j 的最小花费 f[i][j] = min(f[i - 1][k] + abs(k ...

  4. 【USACO07NOV】电话线Telephone Wire

    题目描述 电信公司要更换某个城市的网线.新网线架设在原有的 N(2 <= N <= 100,000)根电线杆上, 第 i 根电线杆的高度为 height_i 米(1 <= heigh ...

  5. [USACO 07NOV]电话线Telephone Wire

    题目描述 Farmer John's cows are getting restless about their poor telephone service; they want FJ to rep ...

  6. DP+滚动数组 || [Usaco2007 Nov]Telephone Wire 架设电话线 || BZOJ 1705 || Luogu P2885

    本来是懒得写题解的…想想还是要勤发题解和学习笔记…然后就滚过来写题解了. 题面:[USACO07NOV]电话线Telephone Wire 题解: F[ i ][ j ] 表示前 i 根电线杆,第 i ...

  7. 【动态规划】bzoj1705: [Usaco2007 Nov]Telephone Wire 架设电话线

    可能是一类dp的通用优化 Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设 ...

  8. BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP

    BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是 ...

  9. bzoj1705[Usaco2007 Nov]Telephone Wire 架设电话线(dp优化)

    1705: [Usaco2007 Nov]Telephone Wire 架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 441  Solved: ...

随机推荐

  1. 关于QQ的NABCD模型

    关于QQ的NABCD模型 N--Need 随着电脑的普及,人们在网络上进行交流的时间越来越多,由于现有的交流工具还不是那么的完善,还不能够完全满足人们在交流时的需求.因此为了满足人们更多的需求,我们设 ...

  2. “数学口袋精灵”App的第三个Sprint计划----开发日记

    一.现状 上一阶段基本完成一个小游戏,游戏具有:随机产生算式,判断对错功能.通过轻快的背景音乐,音效,给玩家提供一个良好的氛围.   二.任务认领 完成界面,基本功能后的后续任务: 冯美欣:设计&qu ...

  3. tensorflow在windows下的安装

    1.python 的安装 这里我选择的是Anaconda4.2,附上下载链接https://www.continuum.io/downloads 2.测试python安装是否成功 在cmd中输入pyt ...

  4. 【转】Linux tail 命令详解

    Linux tail 命令详解 http://www.2cto.com/os/201111/110143.html

  5. Effective C++(第三版)笔记 ---- 第一部分让自己习惯C++

    内容从侯捷译版的<Effective C++>(第三版)摘录 条款一 C++作为一个多种范式融合的语言,可以看成是语言的联邦,它包含了一下四种主要的次语言: C.C++以C为基础,很多时候 ...

  6. 携程Apollo配置中心架构深度剖析

    转自:http://www.uml.org.cn/wfw/201808153.asp 一.介绍 Apollo(阿波罗)[参考附录]是携程框架部研发并开源的一款生产级的配置中心产品,它能够集中管理应用在 ...

  7. 数组操作方法(包括es5)

    //push(); 定义:可以可向数组的末尾添加一个或更多元素,并返回新的长度. 方法:push(); 语法:数组.push(新元素1,新元素2,....,新元素x) 返回值:把指定的值添加到数组后的 ...

  8. numpy meshgrid函数

    1.meshgrid函数用两个坐标轴上的点在平面上画格. 用法: [X,Y]=meshgrid(x,y)  [X,Y]=meshgrid(x)与[X,Y]=meshgrid(x,x)是等同的  [X, ...

  9. Ajax+JSP登陆后带参数跳转

    点击提交按钮后使用Ajax将用户名和密码传至后台校验,然后判断返回结果进行跳转或提示错误. <%@ taglib prefix="form" uri="http:/ ...

  10. CNN tricks

    Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei) http://lamda.nju.edu.cn/weixs/projec ...