LCA(Lowest Common Ancestor 最近公共祖先)定义如下:在一棵树中两个节点的LCA为这两个节点所有的公共祖先中深度最大的节点。

比如这棵树

结点5和6的LCA是2,12和7的LCA是1,8和14的LCA是4。

这里讲一下用树链剖分来求LCA。

先想一下,若要求结点13和4的LCA,那很显然是4,因为他们在一条重链上。所谓的重链,就是取每个结点u的所有子节点中,子树最大的子结点v,然后将边(u,v)作为重边,其余边作为轻边,重边构成的链就是重链。子树最大就是指该点所得孩子结点最多(这里要包括他自己)。

我们先找出所有的重链。

可见这棵树有7条重链(包括一条链只有一个结点的)。每一条重链的顶点就是该链上深度最小的结点。

而树链剖分的目标就是将要求的两个点转换到一条重链上,这样LCA就是该条重链上深度较小的结点了。

具体实现步骤拿第一幅图中的结点12和14举例。首先要比较的是12和14所在链的顶点的深度,可见12所在链的顶点更深,此时将12跳到它的顶点12的父亲结点6。然后再比较6所在链的顶点和14所在链的顶点,循环下去直到两个点到同一个链上,最后比较,收尾。

这就是树链剖分的基本思想了,那我就开始写了。

首先跑两遍dfs,第一遍是建树和建链,第二遍是记录每一个结点的顶点(这样就知道该点所在链的顶点的深度了)。然后就是用上述思想求LCA。

我们以洛谷的板子为例,传送门:https://www.luogu.org/problemnew/show/P3379

上代码(懒得用邻接表存图了,上vector)

其中vis数组是为了解决无向图存两次边的问题。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 5e5 + ;
vector<int>v[maxn];
/*第一遍dfs主要来维护以下这些数组,size[now]指结点now的子树大小,dep[now]指结点now的深度,
Maxson[now]指now所在链上结点now的下一个结点(用来建链) */
int vis[maxn], size[maxn], dep[maxn], fa[maxn], Maxson[maxn];
void dfs1(int now)
{
vis[now] = ; size[now]= ;
for(int i = ; i < v[now].size(); ++i)
if(!vis[v[now][i]])
{
dep[v[now][i]] = dep[now] + ;
fa[v[now][i]] = now;
dfs1(v[now][i]);
size[now] += size[v[now][i]]; //结点now的子树大小就是他所有孩子结点的大小之和加1(包括自己)
if(size[v[now][i]] > size[Maxson[now]]) Maxson[now] = v[now][i]; //选重边
}
}
int path[maxn];
void dfs2(int now)
{
vis[now] = ;
for(int i = ; i < v[now].size(); ++i)
if(!vis[v[now][i]])
{
if(Maxson[now] == v[now][i]) path[v[now][i]] = path[now];
else path[v[now][i]] = v[now][i]; //新开辟一条链
dfs2(v[now][i]);
}
}
int lca(int x, int y)
{
while(path[x] != path[y]) //若不在一条链上
{
if(dep[path[x]] > dep[path[y]]) x = fa[path[x]];
else y = fa[path[y]];
}
return dep[x] < dep[y] ? x : y;
}
int main()
{
int n, m, s; scanf("%d%d%d", &n, &m, &s);
for(int i = ; i < n; ++i)
{
int a, b; scanf("%d%d", &a, &b);
v[a].push_back(b); v[b].push_back(a);
}
dep[s] = ; memset(vis, , sizeof(vis));
dfs1(s);
path[s] = s; memset(vis, , sizeof(vis));
dfs2(s);
for(int i = ; i <= m; ++i)
{
int a, b; scanf("%d%d", &a, &b);
printf("%d\n", lca(a, b));
}
return ;
}

我们再来分析一下时间复杂度:任意一个结点到根的路径,每遇到一条轻边,子树大小就至少翻一倍,所以最坏情况下是O(logn),很牛吧?

洛谷的这个毒瘤板子题,我以前用RMQ和树上倍增写都会T两个点,加快读快输开氧气勉强过了,但是很不爽。直到有一天我会了树剖后,竟然直接AC,贼激动。

那我就讲到这了。啊对了,他有一个缺点,难写(还是RMQ简单)

LCA树链剖分的更多相关文章

  1. Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式)

    Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式) 题外话,这是我第40篇随笔,纪念一下.<( ̄︶ ̄)↗[GO!] 题意 是说有棵树,每个节点上 ...

  2. [BZOJ3626] [LNOI2014]LCA(树链剖分)

    [BZOJ3626] [LNOI2014]LCA(树链剖分) 题面 给出一棵N个点的树,要求支持Q次询问,每次询问一个点z与编号为区间[l,r]内的点分别求最近公共祖先得到的最近公共祖先深度和.N, ...

  3. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  4. Codeforces Round #329 (Div. 2) D. Happy Tree Party LCA/树链剖分

    D. Happy Tree Party     Bogdan has a birthday today and mom gave him a tree consisting of n vertecie ...

  5. BZOJ 3626: [LNOI2014]LCA( 树链剖分 + 离线 )

    说多了都是泪啊...调了这么久.. 离线可以搞 , 树链剖分就OK了... -------------------------------------------------------------- ...

  6. [CodeVS2370] 小机房的树 (LCA, 树链剖分, LCT)

    Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天,他们想爬到一个节点上去搞基,但是作为两只虫子,他们不想花 ...

  7. BZOJ3626[LNOI2014]LCA——树链剖分+线段树

    题目描述 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询 ...

  8. bzoj 3626 : [LNOI2014]LCA (树链剖分+线段树)

    Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q ...

  9. 【bzoj3626】[LNOI2014]LCA 树链剖分+线段树

    题目描述 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询 ...

随机推荐

  1. 微服务学习二:springboot与swagger2的集成

    现在测试都提倡自动化测试,那我们作为后台的开发人员,也得进步下啊,以前用postman来测试后台接口,那个麻烦啊,一个字母输错就导致测试失败,现在swagger的出现可谓是拯救了这些开发人员,便捷之处 ...

  2. [转] can not find module @angular/animations/browser

    本文转自:https://blog.csdn.net/yaerfeng/article/details/68956298 angularjs4升级了,原来的animations现在被单独出来一个包. ...

  3. [转]简单的动态修改RDLC报表页边距和列宽的方法

    本文转自:http://star704983.blog.163.com/blog/static/136661264201161604413204/ 1.修改页边距 XmlDocument XMLDoc ...

  4. 使用C#编写自己的代码生成器,附代码讲解(一)

    使用过代码生成器的开发人员应该知道,通过代码生成器生成项目的代码,可以大大的减少重复编码的时间,提供项目开发的效率,将自己从繁杂重复的代码中解放出来.现在网络上也有很多的开源的代码生成器或者使用比较广 ...

  5. java中的重载(overload)和重写(override)区别

    方法重载(overload): 方法重载就是在一个类中可以创建多个方法,它们具有相同的名字,但是具有不同的参数和不同定义,调用方法时通过传递给他们的不同参数个数和参数列表决定具体使用     哪   ...

  6. c#unicode,中文互转

    /// <summary> /// 中文转unicode /// </summary> /// <returns></returns> public s ...

  7. 【Java基础】14、位运算之——按位与(&)操作——(快速取模算法)

    学习redis 字典结构,hash找槽位 求槽位的索引值时,用到了 hash值 & sizemask操作, 其后的scan操作涉及扫描顺序逻辑,对同模的槽位 按一定规则扫描! 其中涉及位运算 ...

  8. java - Jsoup原理

    https://blog.csdn.net/xh16319/article/details/28129845 http://www.voidcn.com/article/p-hphczsin-ru.h ...

  9. 4个错误使用JavaScript数组方法的案例

    译者按: 做一个有追求的工程师,代码不是随便写的! 原文: Here's how you can make better use of JavaScript arrays 译者: Fundebug 为 ...

  10. canvas-0scale.html

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...