That Nice Euler Circuit(LA3263+几何)
That Nice Euler Circuit
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu
Description
Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study about graphs. The problem in that story was - let me remind you - to draw a graph on a paper without lifting your pen, and finally return to the original position. Euler proved that you could do this if and only if the (planar) graph you created has the following two properties: (1) The graph is connected; and (2) Every vertex in the graph has even degree.
Joey's Euler machine works exactly like this. The device consists of a pencil touching the paper, and a control center issuing a sequence of instructions. The paper can be viewed as the infinite two-dimensional plane; that means you do not need to worry about if the pencil will ever go off the boundary.
In the beginning, the Euler machine will issue an instruction of the form (X0, Y0) which moves the pencil to some starting position (X0,Y0). Each subsequent instruction is also of the form (X', Y'), which means to move the pencil from the previous position to the new position (X', Y'), thus draw a line segment on the paper. You can be sure that the new position is different from the previous position for each instruction. At last, the Euler machine will always issue an instruction that move the pencil back to the starting position (X0, Y0). In addition, the Euler machine will definitely not draw any lines that overlay other lines already drawn. However, the lines may intersect.
After all the instructions are issued, there will be a nice picture on Joey's paper. You see, since the pencil is never lifted from the paper, the picture can be viewed as an Euler circuit.
Your job is to count how many pieces (connected areas) are created on the paper by those lines drawn by Euler.
Input
There are no more than 25 test cases. Ease case starts with a line containing an integer N
4, which is the number of instructions in the test case. The following N pairs of integers give the instructions and appear on a single line separated by single spaces. The first pair is the first instruction that gives the coordinates of the starting position. You may assume there are no more than 300 instructions in each test case, and all the integer coordinates are in the range (-300, 300). The input is terminated when N is 0.
Output
For each test case there will be one output line in the format
Case x: There are w pieces.,
where x is the serial number starting from 1.
Note: The figures below illustrate the two sample input cases.

Sample Input
5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
0
Sample Output
Case 1: There are 2 pieces.
Case 2: There are 5 pieces.
/*********************************************************************************
欧拉定理:设平面图的顶点数、边数和面数分别为V、E和F,则V+F-E=2
so...F=E+2-V;
该平面图的结点有原来的和新增结点构成,由于可能出现三线共点,需要删除重复点
*********************************************************************************/
#include<cstdio>
#include<cmath>
#include<algorithm>
#define PI acos(-1.0)
using namespace std; struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y){}
}; typedef Point Vector; //向量+向量=向量; 向量+点=点
Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);} //点-点=向量
Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);} //向量*数=向量
Vector operator * (Vector A,double p){return Vector(A.x*p,A.y*p);} //向量/数=向量
Vector operator / (Vector A,double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){return a.x<b.x||(a.x==b.x && a.y<b.y);} const double eps = 1e-; int dcmp(double x){if(fabs(x)<eps)return ;else return x < ? - : ;} bool operator == (const Point& a,const Point& b){return dcmp(a.x-b.x)== && dcmp(a.y-b.y)==;} double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}
double length(Vector A){return sqrt(Dot(A,A));}
double Angle(Vector A,Vector B){return acos(Dot(A,B)/length(A)/length(B));} double Cross(Vector A,Vector B){return A.x*B.y-B.x*A.y;}
double Area2(Point A,Point B,Point C){return Cross(B-A,C-A);} /*******两直线交点*******/
//调用前确保两条直线P+tv和Q+tv有唯一交点,当且仅当Cross(v,w)非0;
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
Vector u=P-Q;
if(Cross(v,w))
{
double t=Cross(w,u)/Cross(v,w);//精度高的时候,考虑自定义分数类
return P+v*t;
}
// else
// return ;
} /************************
线段相交判定(规范相交)
************************/
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1=Cross(a2-a1,b1-a1);
double c2=Cross(a2-a1,b2-a1);
double c3=Cross(b2-b1,a1-b1);
double c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<&&dcmp(c3)*dcmp(c4)<;
}
/**如果允许在端点处相交:如果c1和c2都是0,表示共线,如果c1和c2不都是0,则表示某个端点在另一条直线上**/
bool Onsegment(Point p,Point a1,Point a2)
{
return dcmp(Cross(a1-p,a2-p))==&&dcmp(Dot(a1-p,a2-p))<;
} const int mmax=;
Point P[mmax],V[mmax*mmax]; Point read_point(Point &P)
{
scanf("%lf%lf",&P.x,&P.y);
return P;
} int main()
{
int n;
int ck=;
while(scanf("%d",&n),n)
{
for(int i=;i<n;i++)
{
P[i]=read_point(P[i]);
V[i]=P[i];
}
n--;
int c=n,e=n;
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
if(SegmentProperIntersection(P[i],P[i+],P[j],P[j+]))//严格相交
{
V[c++]=GetLineIntersection(P[i],P[i+]-P[i],P[j],P[j+]-P[j]);//交点
}
}
}
// printf("c=%d\n",c);
sort(V,V+c);
c=unique(V,V+c)-V;
// printf("%d=%d-%d\n",c,unique(V,V+c),V);
for(int i=;i<c;i++)
{
for(int j=;j<n;j++)
{
if(Onsegment(V[i],P[j],P[j+])) e++;//边数
}
}
printf("Case %d: There are %d pieces.\n",ck++,e+-c);
}
return ;
} /*
5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
7
1 1 1 5 2 1 2 5 5 1 3 9 1 1
0
*/
That Nice Euler Circuit(LA3263+几何)的更多相关文章
- UVALive - 3263 That Nice Euler Circuit (几何)
UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址: UVALive - 3263 That Nice Euler Circuit 题意: 给 ...
- UVALive-3263 That Nice Euler Circuit (几何欧拉定理)
https://vjudge.net/problem/UVALive-3263 平面上有一个n个端点的一笔画,第n个端点总是和第一个端点重合,因此图示一条闭合曲线. 组成一笔画的线段可以相交,但不会部 ...
- UVALi 3263 That Nice Euler Circuit(几何)
That Nice Euler Circuit [题目链接]That Nice Euler Circuit [题目类型]几何 &题解: 蓝书P260 要用欧拉定理:V+F=E+2 V是顶点数; ...
- poj2284 That Nice Euler Circuit(欧拉公式)
题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k( ...
- POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)
That Nice Euler Circuit Time Limit: 3000MS M ...
- UVa 10735 (混合图的欧拉回路) Euler Circuit
题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话, ...
- UVA 10735 Euler Circuit 混合图的欧拉回路(最大流,fluery算法)
题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制 ...
- UVA-10735 - Euler Circuit(混合欧拉回路输出)
题意:给你一个图,有N个点,M条边,这M条边有的是单向的,有的是双向的. 问你能否找出一条欧拉回路,使得每条边都只经过一次! 分析: 下面转自别人的题解: 把该图的无向边随便定向,然后计算每个点的入度 ...
- Uva 1342 - That Nice Euler Circuit
Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his ...
随机推荐
- web安全基础
web安全备忘 主机系统安全防护:防火墙控制 Web是一个分布式系统,一个站点多个主机布置,一主机布置多个站点:并发,异步,同步 主机安全配置文件修改与强化 web站点数据验证逻辑的常用技巧:功能性代 ...
- css3的动画效果
全新的css3加入的动画效果: [ animation-name ]:检索或设置对象所应用的动画名称 [ animation-duration ]: 检索或设置对象动画的持续时间 [ animatio ...
- git 命令(提高篇)的本质理解
上一篇博客:[[git 命令(提高篇)的本质理解] (http://www.cnblogs.com/juking/p/7105744.html)]介绍了Git 的基础知识 -- 提交.分支以及在提交树 ...
- python pickle模块的使用/将python数据对象序列化保存到文件中
# Python 使用pickle/cPickle模块进行数据的序列化 """Python序列化的概念很简单.内存里面有一个数据结构, 你希望将它保存下来,重用,或者发送 ...
- 微信小程序如何调用API实现数据请求-wx.request()
前言 微信小程序不存在ajax,那么它是如何实现数据请求功能的呢?在微信中提供了API的调用wx.request(OBJECT),这个是很不错的.下面就讲一下如何请求数据,简单到不行. wx.requ ...
- bootstrap fileinput 使用记录
第一次使用bootstrap fileinput碰到了许多坑,做下记录 需求 本次使用bootstrap fileinput文件上传组件,主要用来上传和预览图片.作为一个后台管理功能,为某个表的某个字 ...
- 视频下载四大神器—如何下载优酷/爱奇艺/腾讯/B站超清无水印视频
视频下载四大神器—如何下载优酷/爱奇艺/腾讯/B站超清无水印视频 2018-07-11 | 标签»下载, 下载工具, 视频 又是视频下载,老生常谈的话题.阿刚同学已在乐软博客多次与大家分享推荐 ...
- centos安装守护进程工具supervisor
安装命令 yum install supervisor 启动守护进程 supervisord -c /etc/supervisord.conf 切换至/etc/supervisord.d目录下 写一个 ...
- 安装CDH5 hadoop2.3.0 NodeManager 没有启动
今天在安装hadoop后,启动start-yarn.sh后,nodemanager起不起来,后来查看DN节点的日志,报了以下一个错误: FATAL org.apache.hadoop.yarn.ser ...
- 关于爬虫中常见的两个网页解析工具的分析 —— lxml / xpath 与 bs4 / BeautifulSoup
http://www.cnblogs.com/binye-typing/p/6656595.html 读者可能会奇怪我标题怎么理成这个鬼样子,主要是单单写 lxml 与 bs4 这两个 py 模块名可 ...