That Nice Euler Circuit(LA3263+几何)
That Nice Euler Circuit
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu
Description
Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study about graphs. The problem in that story was - let me remind you - to draw a graph on a paper without lifting your pen, and finally return to the original position. Euler proved that you could do this if and only if the (planar) graph you created has the following two properties: (1) The graph is connected; and (2) Every vertex in the graph has even degree.
Joey's Euler machine works exactly like this. The device consists of a pencil touching the paper, and a control center issuing a sequence of instructions. The paper can be viewed as the infinite two-dimensional plane; that means you do not need to worry about if the pencil will ever go off the boundary.
In the beginning, the Euler machine will issue an instruction of the form (X0, Y0) which moves the pencil to some starting position (X0,Y0). Each subsequent instruction is also of the form (X', Y'), which means to move the pencil from the previous position to the new position (X', Y'), thus draw a line segment on the paper. You can be sure that the new position is different from the previous position for each instruction. At last, the Euler machine will always issue an instruction that move the pencil back to the starting position (X0, Y0). In addition, the Euler machine will definitely not draw any lines that overlay other lines already drawn. However, the lines may intersect.
After all the instructions are issued, there will be a nice picture on Joey's paper. You see, since the pencil is never lifted from the paper, the picture can be viewed as an Euler circuit.
Your job is to count how many pieces (connected areas) are created on the paper by those lines drawn by Euler.
Input
There are no more than 25 test cases. Ease case starts with a line containing an integer N
4, which is the number of instructions in the test case. The following N pairs of integers give the instructions and appear on a single line separated by single spaces. The first pair is the first instruction that gives the coordinates of the starting position. You may assume there are no more than 300 instructions in each test case, and all the integer coordinates are in the range (-300, 300). The input is terminated when N is 0.
Output
For each test case there will be one output line in the format
Case x: There are w pieces.,
where x is the serial number starting from 1.
Note: The figures below illustrate the two sample input cases.

Sample Input
5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
0
Sample Output
Case 1: There are 2 pieces.
Case 2: There are 5 pieces.
/*********************************************************************************
欧拉定理:设平面图的顶点数、边数和面数分别为V、E和F,则V+F-E=2
so...F=E+2-V;
该平面图的结点有原来的和新增结点构成,由于可能出现三线共点,需要删除重复点
*********************************************************************************/
#include<cstdio>
#include<cmath>
#include<algorithm>
#define PI acos(-1.0)
using namespace std; struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y){}
}; typedef Point Vector; //向量+向量=向量; 向量+点=点
Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);} //点-点=向量
Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);} //向量*数=向量
Vector operator * (Vector A,double p){return Vector(A.x*p,A.y*p);} //向量/数=向量
Vector operator / (Vector A,double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){return a.x<b.x||(a.x==b.x && a.y<b.y);} const double eps = 1e-; int dcmp(double x){if(fabs(x)<eps)return ;else return x < ? - : ;} bool operator == (const Point& a,const Point& b){return dcmp(a.x-b.x)== && dcmp(a.y-b.y)==;} double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}
double length(Vector A){return sqrt(Dot(A,A));}
double Angle(Vector A,Vector B){return acos(Dot(A,B)/length(A)/length(B));} double Cross(Vector A,Vector B){return A.x*B.y-B.x*A.y;}
double Area2(Point A,Point B,Point C){return Cross(B-A,C-A);} /*******两直线交点*******/
//调用前确保两条直线P+tv和Q+tv有唯一交点,当且仅当Cross(v,w)非0;
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
Vector u=P-Q;
if(Cross(v,w))
{
double t=Cross(w,u)/Cross(v,w);//精度高的时候,考虑自定义分数类
return P+v*t;
}
// else
// return ;
} /************************
线段相交判定(规范相交)
************************/
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1=Cross(a2-a1,b1-a1);
double c2=Cross(a2-a1,b2-a1);
double c3=Cross(b2-b1,a1-b1);
double c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<&&dcmp(c3)*dcmp(c4)<;
}
/**如果允许在端点处相交:如果c1和c2都是0,表示共线,如果c1和c2不都是0,则表示某个端点在另一条直线上**/
bool Onsegment(Point p,Point a1,Point a2)
{
return dcmp(Cross(a1-p,a2-p))==&&dcmp(Dot(a1-p,a2-p))<;
} const int mmax=;
Point P[mmax],V[mmax*mmax]; Point read_point(Point &P)
{
scanf("%lf%lf",&P.x,&P.y);
return P;
} int main()
{
int n;
int ck=;
while(scanf("%d",&n),n)
{
for(int i=;i<n;i++)
{
P[i]=read_point(P[i]);
V[i]=P[i];
}
n--;
int c=n,e=n;
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
if(SegmentProperIntersection(P[i],P[i+],P[j],P[j+]))//严格相交
{
V[c++]=GetLineIntersection(P[i],P[i+]-P[i],P[j],P[j+]-P[j]);//交点
}
}
}
// printf("c=%d\n",c);
sort(V,V+c);
c=unique(V,V+c)-V;
// printf("%d=%d-%d\n",c,unique(V,V+c),V);
for(int i=;i<c;i++)
{
for(int j=;j<n;j++)
{
if(Onsegment(V[i],P[j],P[j+])) e++;//边数
}
}
printf("Case %d: There are %d pieces.\n",ck++,e+-c);
}
return ;
} /*
5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
7
1 1 1 5 2 1 2 5 5 1 3 9 1 1
0
*/
That Nice Euler Circuit(LA3263+几何)的更多相关文章
- UVALive - 3263 That Nice Euler Circuit (几何)
UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址: UVALive - 3263 That Nice Euler Circuit 题意: 给 ...
- UVALive-3263 That Nice Euler Circuit (几何欧拉定理)
https://vjudge.net/problem/UVALive-3263 平面上有一个n个端点的一笔画,第n个端点总是和第一个端点重合,因此图示一条闭合曲线. 组成一笔画的线段可以相交,但不会部 ...
- UVALi 3263 That Nice Euler Circuit(几何)
That Nice Euler Circuit [题目链接]That Nice Euler Circuit [题目类型]几何 &题解: 蓝书P260 要用欧拉定理:V+F=E+2 V是顶点数; ...
- poj2284 That Nice Euler Circuit(欧拉公式)
题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k( ...
- POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)
That Nice Euler Circuit Time Limit: 3000MS M ...
- UVa 10735 (混合图的欧拉回路) Euler Circuit
题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话, ...
- UVA 10735 Euler Circuit 混合图的欧拉回路(最大流,fluery算法)
题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制 ...
- UVA-10735 - Euler Circuit(混合欧拉回路输出)
题意:给你一个图,有N个点,M条边,这M条边有的是单向的,有的是双向的. 问你能否找出一条欧拉回路,使得每条边都只经过一次! 分析: 下面转自别人的题解: 把该图的无向边随便定向,然后计算每个点的入度 ...
- Uva 1342 - That Nice Euler Circuit
Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his ...
随机推荐
- HDU 1171 01背包
http://acm.hdu.edu.cn/showproblem.php?pid=1171 基础的01背包,求出总值sum,背包体积即为sum/2 #include<stdio.h> # ...
- Django View 进阶
返回404 from django.http import HttpResponse, HttpResponseNotFound def not_found(request): ) 或 return ...
- MVC身份验证及权限管理(转载)
from https://www.cnblogs.com/asks/p/4372783.html MVC自带的ActionFilter 在Asp.Net WebForm的中要做到身份认证微软为我们提供 ...
- 使用root用户登录到AWS EC2服务器
首先是在putty中使用ec2-user登录服务器后,创建root账户的密码,使用如下命令: sudo passwd root 然后会提示你输入new password,输入之后回车,会让你retyp ...
- 进程控制(Note for apue and csapp)
1. Introduction We now turn to the process control provided by the UNIX System. This includes the cr ...
- [UWP]使用Picker实现一个简单的ColorPicker弹窗
在上一篇博文<[UWP]使用Popup构建UWP Picker>中我们简单讲述了一下使用Popup构建适用于MVVM框架下的弹窗层组件Picker的过程.但是没有应用实例的话可能体现不出P ...
- 背水一战 Windows 10 (84) - 用户和账号: 微软账号的登录和注销
[源码下载] 背水一战 Windows 10 (84) - 用户和账号: 微软账号的登录和注销 作者:webabcd 介绍背水一战 Windows 10 之 用户和账号 微软账号的登录和注销 示例演示 ...
- js函数式编程——蹦床函数
概述 这是我在学习函数式编程的时候,关于递归,尾递归,相互递归和蹦床函数的一些心得,记下来供以后开发时参考,相信对其他人也有用. 参考资料:JavaScript玩转Clojure大法之 - Tramp ...
- 关于文件命名,你必须要知道的(浏览器报错:net::ERR_BLOCKED_BY_CLIENT)
坑爹的,今天在写完页面,用各个浏览器测试的时候,火狐.谷歌都是正常的,QQ浏览器出幺蛾子了,在使用兼容模式的时候页面正常,使用急速模式的时候部分页面正常,点击跳转到其他页面的时候就出错了,打开控制台一 ...
- java中微信统一下单采坑(app微信支付)
app支付前java后台统一下单文档:https://pay.weixin.qq.com/wiki/doc/api/app/app.php?chapter=9_1 微信支付接口签名校验工具:https ...