Luogu4528 CTSC2008 图腾 树状数组、容斥
设$f_i$表示$i$排列的数量,其中$x$表示不确定
那么$$ans=f_{1324}-f_{1432}-f_{1243}=(f_{1x2x}-f_{1423})-(f_{14xx}-f_{1423})-(f_{12xx}-f_{1234})$$
$$=f_{1x2x}-(f_{14xx}+f_{12xx})+f_{1234}$$
$$=f_{1x2x}-f_{1xxx}+f_{13xx}+f_{1234}$$
①$f_{1xxx}$用树状数组求正序对
②$f_{1234}$四个树状数组瞎搞
③$f_{1x2x}$,考虑枚举$2$的位置
设$l_i$表示满足$j<i,a_j<a_i$的$j$的数量,$r_i$表示满足$j>i,a_j<a_i$的$j$的数量
那么右边的$x$的取法就是$N-i-r_i$种
考虑左边的$x$,考虑容斥。满足$p<i,q<i,a_p<a_i$的有序数对$(p,q)$的数量有$l_i \times (i-1)$个,但是其中多算了:
a.$p<q , a_q<a_i$,个数有$C_{l_i}^2$个
b.$p \geq q$,个数有$\sum j[j < i,a_j<a_i]$种
④$f_{13xx}$,考虑枚举$3$的位置,那么右边的$4$的取法有$N-i-r_i$种
仍然考虑容斥。满足$a_p<a_i , a_q < a_i , p < i$的个数为$(a_i-1) \times l_i$
考虑多算了什么:
a.$a_q > a_p , q < i$,有$C_{l_i}^2$种
b.$a_q \leq a_p$,有$\sum a_j[j < i , a_j < a_i]$种
上面四种加起来就行了
#include<bits/stdc++.h>
//This code is written by Itst
using namespace std;
inline int read(){
;
;
char c = getchar();
while(c != EOF && !isdigit(c)){
if(c == '-')
f = ;
c = getchar();
}
while(c != EOF && isdigit(c)){
a = (a << ) + (a << ) + (c ^ ');
c = getchar();
}
return f ? -a : a;
}
, MOD = ;
int num[MAXN] , N , sum;
namespace calc{
][MAXN] , l[MAXN] , r[MAXN];
inline int lowbit(int x){
return x & -x;
}
inline void add(int ver , int dir , int num){
while(dir <= N){
(Tree[ver][dir] += num) %= MOD;
dir += lowbit(dir);
}
}
inline int get(int ver , int dir){
;
while(dir){
(sum += Tree[ver][dir]) %= MOD;
dir -= lowbit(dir);
}
return sum;
}
void calc_1xxx(){
for(int i = N ; i ; --i){
, num[i]);
sum = (sum - t * (t - ) * (t - ) / % MOD + MOD) % MOD;
add( , num[i] , );
}
}
void calc_1234(){
; i <= N ; ++i){
sum = (sum + , num[i])) % MOD;
add( , num[i] , , num[i]));
add( , num[i] , , num[i]));
add( , num[i] , );
}
memset(Tree , , sizeof(Tree));
}
void calcl(){
; i <= N ; ++i){
l[i] = , num[i]);
add( , num[i] , );
}
}
void calcr(){
for(int i = N ; i ; --i){
r[i] = , num[i]);
add( , num[i] , );
}
}
void calc_1x2x(){
; i <= N ; ++i){
) - 1ll * l[i] * (l[i] - ) / - , num[i])) % MOD;
sum = (sum + times * base) % MOD;
add( , num[i] , i);
}
}
void calc_13xx(){
; i <= N ; ++i){
) - 1ll * l[i] * (l[i] - ) / - , num[i])) % MOD;
sum = (sum + times * base) % MOD;
add( , num[i] , num[i]);
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("4528.in" , "r" , stdin);
//freopen("4528.out" , "w" , stdout);
#endif
N = read();
; i <= N ; ++i)
num[i] = read();
calc::calc_1xxx();
calc::calc_1234();
calc::calcl();
calc::calcr();
calc::calc_1x2x();
calc::calc_13xx();
cout << sum;
;
}
Luogu4528 CTSC2008 图腾 树状数组、容斥的更多相关文章
- 【BZOJ4361】isn 动态规划+树状数组+容斥
[BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...
- bzoj4361 isn (dp+树状数组+容斥)
我们先设f[i][j]表示长度为i,以j结尾的不降子序列个数,$f[i][j]=\sum{f[i-1][k]},A[k]<=A[j],k<j$,用树状数组优化一下可以$O(n^2logn) ...
- BZOJ.4361.isn(DP 树状数组 容斥)
题目链接 长度为\(i\)的不降子序列个数是可以DP求的. 用\(f[i][j]\)表示长度为\(i\),结尾元素为\(a_j\)的不降子序列个数.转移为\(f[i][j]=\sum f[i-1][k ...
- 【BZOJ 4361】 4361: isn (DP+树状数组+容斥)
4361: isn Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 218 Solved: 126 Description 给出一个长度为n的序列A( ...
- AcWing 241.楼兰图腾 (树状数组,逆序对)
题意:在二维坐标轴上给你一些点,求出所有由三个点构成的v和∧图案的个数. 题解:因为给出的点是按横坐标的顺序给出的,所以我们可以先遍历然后求出某个点左边比它高和低的点的个数(这个过程简直和用树状数组求 ...
- hdu 5792(树状数组,容斥) World is Exploding
hdu 5792 要找的无非就是一个上升的仅有两个的序列和一个下降的仅有两个的序列,按照容斥的思想,肯定就是所有的上升的乘以所有的下降的,然后再减去重复的情况. 先用树状数组求出lx[i](在第 i ...
- BZOJ4361 isn 树状数组、DP、容斥
传送门 不考虑成为非降序列后停止的限制,那么答案显然是\(\sum\limits_{i=1}^N cnt_i \times (N-i)!\),其中\(cnt_i\)表示长度为\(i\)的非降序列数量 ...
- [CF1086E]Beautiful Matrix(容斥+DP+树状数组)
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...
- BZOJ 4361 isn 容斥+dp+树状数组
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361 题意概述: 给出一个长度为N的序列A(A1,A2...AN).如果序列A不是非降的 ...
随机推荐
- 微信小程序转发功能
微信小程序转发涉及以下4个方法: 1.Page.onShareAppMessage({}) 设置右上角“转发”配置,及转发后回调函数返回 shareTicket 票据 2.wx.showSahreMe ...
- .NET中资源文件的使用
工作需要,为VB.NET WinForm程序提供一个中英文界面切换功能,大方向有三个ini.XML.资源文件. 首先ini太过时,坚决不打算用.资源文件和XML相比提供了一个资源文件管理器,编写键值对 ...
- linux上部署engineercms、docker和onlyoffice实现文档协作
等了好久,这次终于下决心在局域网部署了linux系统,并安装docker和load了onlyoffice,利用engineercms进行资料管理和文档协作. 我整理了完整文档,见我的网盘. engin ...
- C# winform三种定时方法
1. 直接用winform 的 timers 拖控件进去 代码 public partial class Form1 : Form { public Form1() ...
- React Refs
React Refs React 支持一种非常特殊的属性 Ref ,你可以用来绑定到 render() 输出的任何组件上. 这个特殊的属性允许你引用 render() 返回的相应的支撑实例( back ...
- windows 实用技巧
以下内容版权归原作者所有!!!如果侵权,立即删除. 1.系统激活:https://mp.weixin.qq.com/s/Kl_iEeSSxSprblfSRZ6yEQ 2.百度云下载:https://w ...
- Can't debug c++ project because unable to static library start program *.lib
Can't debug c++ project because unable to static library start program *.lib I'm using a library ( ...
- python使用关键字爬取url
python网路爬虫 --------- 使用百度输入的关键字搜索内容然后爬取搜索内容的url 开发环境:windows7+python3.6.3 开发语言:Python 开发工具:pycharm 第 ...
- .NET 序列化成XML, 并且格式化
现有Person类: [Serializable] public class Person { public string Name; public string Info; public Perso ...
- Beta冲刺(4/5)(麻瓜制造者)
今日已完成 邓弘立:完成了商品管理(下架)和搜索功能 符天愉:完成了后台管理员界面的登录和其他视图的载入 江郑:昨天来决定跨域执行请求,后台参考一些意见以后,操作起来没有那么容易实现,和队友交流以后本 ...