Luogu P3990 [SHOI2013]超级跳马
这道题还是一道比较不可做的矩阵题
首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移:
f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2*k+1]+f[i][j-2*k+1](1<=k<=i/2)
但这样是很慢的,然后我们就可以前缀和优化
这里有两种方法,一个是用奇偶数行进行讨论,还有一种我认为是比较清晰的也比较容易理解
我们先来看一张图:

我们令f[i][j]表示前面可以转移到它的前缀和。例如图中的蓝色格子就是前6个格子的和
然后我们发现红色格子就是由蓝色格子+与它相近(i坐标差值为1)的3个黄色格子的值
然后就可以O(nm)求,但是这显然是过不了的
但是我们仔细研究一下发现每一次的转移都是等价的,所以我们用矩阵优化
由于每一列的值都和它前面两列有关,所以我们需要一个2*n*2*n的矩阵来转移,这个的话大概长这样(n=3时)

具体还是看CODE吧,然后就是常规的矩阵快速幂了
CODE
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=55,mod=30011;
int n,m;
struct Matrix
{
int n,m;
LL a[N<<1][N<<1];
inline void Dt_init(void)
{
register int i; memset(a,0,sizeof(a)); n>>=1;
for (i=1;i<=n;++i)
a[i][i+n]=a[i+n][i]=1;
for (i=1;i<=n;++i)
{
if (i^1) a[i][i-1]=1;
if (i^n) a[i][i+1]=1;
a[i][i]=1;
} n<<=1;
}
inline void cri_init(void)
{
register int i; memset(a,0,sizeof(a));
for (i=1;i<=n;++i)
a[i][i]=1;
}
};
inline Matrix mul(Matrix A,Matrix B)
{
Matrix C; C.n=A.n; C.m=B.m; memset(C.a,0,sizeof(C.a));
for (register int i=1;i<=C.n;++i)
for (register int j=1;j<=C.m;++j)
for (register int k=1;k<=A.m;++k)
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j])%mod;
return C;
}
inline Matrix quick_pow(Matrix A,int p)
{
Matrix T; T.n=T.m=A.n; T.cri_init();
while (p)
{
if (p&1) T=mul(T,A);
A=mul(A,A); p>>=1;
}
return T;
}
int main()
{
scanf("%d%d",&n,&m);
Matrix A; A.n=A.m=n<<1; A.Dt_init();
A=quick_pow(A,m-2);
printf("%lld",(A.a[n][1]+A.a[n-1][1])%mod);
return 0;
}
Luogu P3990 [SHOI2013]超级跳马的更多相关文章
- BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...
- 洛谷 P3990 [SHOI2013]超级跳马 解题报告
P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...
- P3990 [SHOI2013]超级跳马
传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...
- [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马
Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...
- [BZOJ 4417][Shoi2013]超级跳马
4417: [Shoi2013]超级跳马 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 379 Solved: 230[Submit][Status ...
- [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...
- BZOJ4417: [Shoi2013]超级跳马
Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...
- 【BZOJ4417】: [Shoi2013]超级跳马
题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...
- 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法
题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法. ...
随机推荐
- 测试思想-集成测试 关于接口测试 Part1
关于接口测试 by:授客 QQ:1033553122 接口定义 接口泛指实体把自己提供给外界的一种抽象化物,用以由内部操作分离出外部沟通方法,使其能被修改内部而不影响外界其他实体与其交互的方式. 举例 ...
- Sqlautocode使用过程的一些坑
Sqlautocode是SQLAlchemy一个数据库映射工具,可以将数据库文件映射为python代码,直接在程序中移植使用.最近在使用过程中遇到了一些坑,通过用代码编辑工具pycharm阅读源码和多 ...
- ipa的plist文件查看
1.ipa包解压缩:右键.ipa包,使用[归档实用工具/unarchiver]打开 2.进入解压缩后的payload目录,右键ipa包-显示包内容 3.找到info.plist文件,直接拖拽出来 4. ...
- React Refs
React Refs React 支持一种非常特殊的属性 Ref ,你可以用来绑定到 render() 输出的任何组件上. 这个特殊的属性允许你引用 render() 返回的相应的支撑实例( back ...
- scrapy简单分布式爬虫
经过一段时间的折腾,终于整明白scrapy分布式是怎么个搞法了,特记录一点心得. 虽然scrapy能做的事情很多,但是要做到大规模的分布式应用则捉襟见肘.有能人改变了scrapy的队列调度,将起始的网 ...
- 洗礼灵魂,修炼python(26)--编程核心之“递归”
递归 1.什么是递归: 其实前面都提过,但没有详细讲.多次调用自身就叫递归 看图,这种就叫递归 看过盗梦空间没?其实也是递归 2.递归需要满足条件: 有调用函数自身 有一个正确的返回条件来结束 在使用 ...
- mybatis 相关
一.mybatis转义问题 mybatis中SQL在 mapper.xml 中书写时,如果有 < .>.<=.>= 时会出错,应该使用转义的写法. 写法一 转义 < ...
- Oracle 单引号 双引号 转义符 分隔符
概述 单引号用来标记字符串 双引号用来标记识别对象名 以下使用会比较绕: 字符串中出现单引号.双引号: 表或字段等对象的别名(alias)中出单引号.双引号: 单引号.双引号与空格一起使用: 双引号 ...
- Business talking in English
Talking one: A: Microsoft, this is Steve. B: Hi Steve, this is Richard from Third Hand Testing. I am ...
- 转://Oracle 11gR2 RAC ASM磁盘全部丢失后的恢复
一.环境描述 (1)Oracle 11.2.0.3 RAC ON Oracle Linux 6 x86_64,只有一个ASM外部冗余磁盘组--DATA: (2)OCR,VOTEDISK,DATAFIL ...