题意

题目链接

Sol

为什么一堆分块呀。。三维数点不应该是套路离线/可持久化+树套树么。。

亲测树状数组套权值线段树可过

复杂度\(O(nlog^2n)\),空间\(O(nlogn)\)(离线)

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4e5 + 10, SS = 1e7 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, a[MAXN], pre[MAXN], las[MAXN], Lim = 1e5, tot;
Pair ans[MAXN];
#define lb(x) (x & (-x))
struct BIT {
int T[MAXN];
void Add(int x, int v) {
x++;
while(x <= Lim) T[x] += v, x += lb(x);
}
int sum(int x) {
x++;
int ans = 0;
while(x) ans += T[x], x -= lb(x);
return ans;
}
int Query(int x, int y) {return sum(y) - sum(x - 1);}
}Q1;
struct query {
int k, a, b, id, p;
bool operator < (const query &rhs) const {
return k < rhs.k;
}
}q[MAXN];
int root[SS], sum[SS], ls[SS], rs[SS], cnt;
void update(int k) {
sum[k] = sum[ls[k]] + sum[rs[k]];
}
void insert(int &k, int l, int r, int p, int v) {
if(!k) k = ++cnt;
if(l == r) {sum[k]++; return ;}
int mid = l + r >> 1;
if(p <= mid) insert(ls[k], l, mid, p, v);
else insert(rs[k], mid + 1, r, p, v);
update(k);
}
int Query(int k, int l, int r, int ql, int qr) {
if(!k) return 0;
if(ql <= l && r <= qr) return sum[k];
int mid = l + r >> 1;
if(ql > mid) return Query(rs[k], mid + 1, r, ql, qr);
else if(qr <= mid) return Query(ls[k], l, mid, ql, qr);
else return Query(ls[k], l, mid, ql, qr) + Query(rs[k], mid + 1, r, ql, qr);
}
void Add(int x, int v) {
x++;
while(x <= Lim) insert(root[x], 0, Lim, v, 1), x += lb(x);
}
int Query(int x, int a, int b) {
x++;
int ans = 0;
while(x) ans += Query(root[x], 0, Lim, a, b), x -= lb(x);
return ans;
}
void Solve() {
int x = 0;
for(int i = 1; i <= tot; i++) {
while(x < q[i].k)
Q1.Add(a[++x], 1), Add(pre[x], a[x]);
ans[abs(q[i].id)].fi += (q[i].id / (abs(q[i].id))) * Q1.Query(q[i].a, q[i].b);
ans[abs(q[i].id)].se += (q[i].id / (abs(q[i].id))) * Query(q[i].p, q[i].a, q[i].b);
}
}
signed main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) {
a[i] = read();
pre[i] = las[a[i]]; las[a[i]] = i;
}
for(int i = 1; i <= M; i++) {
int l = read(), r = read(), a = read(), b = read();
q[++tot].k = l - 1; q[tot].a = a; q[tot].b = b; q[tot].id = -i; q[tot].p = l - 1;
q[++tot].k = r; q[tot].a = a; q[tot].b = b; q[tot].id = i; q[tot].p = l - 1;
}
sort(q + 1, q + tot + 1);
Solve();
for(int i = 1; i <= M; i++) printf("%d %d\n", ans[i].fi, ans[i].se);
return 0;
}

洛谷P4396 [AHOI2013]作业(树套树)的更多相关文章

  1. bzoj 3236: 洛谷 P4396: [AHOI2013]作业 (莫队, 分块)

    题目传送门:洛谷P4396. 题意简述: 给定一个长度为\(n\)的数列.有\(m\)次询问,每次询问区间\([l,r]\)中数值在\([a,b]\)之间的数的个数,和数值在\([a,b]\)之间的不 ...

  2. 洛谷 P4396 [AHOI2013]作业

    题目描述 题目传送门 分析 因为询问是关于区间的,并且没有强制在线,所以能用莫队解决 但是还要支持查询区间内大于等于 \(a\),小于等于 \(b\) 的数的个数和数值的个数 所以还要套一个数据结构 ...

  3. 洛谷 P4396 (离散化+莫队+树状数组)

    ### 洛谷P4396  题目链接 ### 题目大意: 有 n 个整数组成的数组,m 次询问,每次询问中有四个参数 l ,r,a,b .问你在[l,r] 的区间内的所有数中,值属于[a,b] 的数的个 ...

  4. 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 &amp; 3236 [Ahoi2013] 作业 题解

    [原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MB Submit: 978  Solved: 476 Descri ...

  5. 「洛谷1903」「BZOJ2120」「国家集训队」数颜色【带修莫队,树套树】

    题目链接 [BZOJ传送门] [洛谷传送门] 题目大意 单点修改,区间查询有多少种数字. 解法1--树套树 可以直接暴力树套树,我比较懒,不想写. 稍微口胡一下,可以直接来一个树状数组套主席树,也就是 ...

  6. 洛谷 P3380 bzoj3196 Tyvj1730 【模板】二逼平衡树(树套树)

    [模板]二逼平衡树(树套树) 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 查询k在区间内的排名 查询区间内排名为k的值 修改某一位值上的数值 查询k在 ...

  7. 洛谷P3380 【模板】二逼平衡树(树套树)(线段树+树状数组)

    P3380 [模板]二逼平衡树(树套树) 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 查询k在区间内的排名 查询区间内排名为k的值 修改某一位值上的数 ...

  8. 【洛谷3759】[TJOI2017] 不勤劳的图书管理员(树套树)

    点此看题面 大致题意: 给定一个序列,每个元素有两个属性\(a_i\)和\(v_i\),每次操作改变两个元素的位置,求每次操作后\(\sum{v_i+v_j}[i<j,a_i>a_j]\) ...

  9. 【洛谷2617_BZOJ1901】Dynamic Rankings(树套树)

    题目: 洛谷 2617 BZOJ 1901 是权限题,\(n=10^4\) ,内存 128 MB :洛谷 2617 \(n=10^5\) ,内存 1024 MB ,数据比较坑. 分析: 蒟蒻初学树套树 ...

随机推荐

  1. flask——包含,继承,宏

     包含,继承,宏  都是为了提高代码的效率,都是为了防止代码的沉余,浪费资源 宏(macro) 可以把它看做Jinja2中的一个函数,他会返回一个模板或者HTML字符串,为了避免反复的编写同样的模板代 ...

  2. Spring框架的演变

    什么是Spring 如果想要解释Spring,那么最难的部分就是对其进行分类.通常情况下,Spring被描述为构建Java应用程序的轻量级框架,但这种描述带来了两个有趣的观点. 首先,与许多其他框架( ...

  3. 二维数组与类的定义_DAY06

    1:二维数组(理解): (1)格式:   1:int[][] arr = new int[3][2];  2:int[][] arr = new int[3][];   3:int[][] arr = ...

  4. ubuntu安装ruby的几种方法总结

    1.apt-get安装 可以使用apt-cache查询功能,找到对应的可用的ruby版本. $ sudo apt-cache search ruby #这个结果很长,我只截取最后与ruby有关的部分 ...

  5. C++:实现类似MFC的IsKindOf功能

    假设需要一个类别库,改类别库共包含以下5个类:GrandFather(祖父类).Father(父类).Son(儿子类).Daughter(女儿类).GrandSon(孙子类) 各个类之间的继承关系为: ...

  6. 关于一点儿对仓储(Repository)的理解

    仓储(Repository) 内容来源于dudu的 关于Repository模式一文 Repository是一个独立的层,介于领域层与数据映射层(数据访问层)之间.它的存在让领域层感觉不到数据访问层的 ...

  7. sqlserver暂时禁用触发器进行update

    --1.禁用某个表上的所有触发器 ALTER TABLE tbname DISABLE TRIGGER all go --2.执行update语句 update tbname set .... go ...

  8. linux下安装lnmp环境

    安装nginx   1 检查是否安装该程序: which nginx           #查看nginx是否存在 which php             #查看php是否存在 which mys ...

  9. Redis for Windows

    要求 必备知识 熟悉基本编程环境搭建. 运行环境 windows 7(64位); redis64-2.8.17 下载地址 环境下载 什么是Redis redis是一个key-value存储系统.和Me ...

  10. mysql通信协议的半双工机制理解

    一.通信知识中的半双工概念 通信的方式分为:单工通信,半双工,全双工. 全双工的典型例子是:打电话.电话在接到声音的同时也会传递声音.在一个时刻,线路上允许两个方向上的数据传输.网卡也是双工模式.在接 ...