《算法》第四章部分程序 part 17
▶ 书中第四章部分程序,包括在加上自己补充的代码,无环图最短 / 最长路径通用程序,关键路径方法(critical path method)解决任务调度问题
● 无环图最短 / 最长路径通用程序
package package01; import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Topological;
import edu.princeton.cs.algs4.DirectedEdge;
import edu.princeton.cs.algs4.EdgeWeightedDigraph;
import edu.princeton.cs.algs4.Stack; public class class01
{
private double[] distTo; // 起点到各顶点的距离
private DirectedEdge[] edgeTo; // 引入各顶点时引入的边 public class01(EdgeWeightedDigraph G, int s)
{
distTo = new double[G.V()];
edgeTo = new DirectedEdge[G.V()];
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY; // 求最长路径时改为 distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
Topological topological = new Topological(G); // 堆图 G 进行拓扑排序
if (!topological.hasOrder())
throw new IllegalArgumentException("\n<Constructor> Digraph is not acyclic.\n");
for (int v : topological.order()) // 依照拓扑顺序松弛每条边
{
for (DirectedEdge e : G.adj(v))
relax(e);
}
} private void relax(DirectedEdge e)
{
int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight()) // 加入这条边会使起点到 w 的距离变短
{ // 求最长路径时将其改为 if (distTo[w] < distTo[v] + e.weight())
distTo[w] = distTo[v] + e.weight(); // 确认加入该边
edgeTo[w] = e;
}
} public double distTo(int v)
{
return distTo[v];
} public boolean hasPathTo(int v)
{
return distTo[v] < Double.POSITIVE_INFINITY;// 求最长路径时将其改为 return distTo[v] < Double.POSITIVE_INFINITY;
} public Iterable<DirectedEdge> pathTo(int v)
{
if (!hasPathTo(v))
return null;
Stack<DirectedEdge> path = new Stack<DirectedEdge>();
for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
path.push(e);
return path;
} public static void main(String[] args)
{
In in = new In(args[0]);
int s = Integer.parseInt(args[1]);
EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);
class01 sp = new class01(G, s);
for (int v = 0; v < G.V(); v++)
{
if (sp.hasPathTo(v))
{
StdOut.printf("%d to %d (%.2f) ", s, v, sp.distTo(v));
for (DirectedEdge e : sp.pathTo(v))
StdOut.print(e + " ");
StdOut.println();
}
else
StdOut.printf("%d to %d no path\n", s, v);
}
}
}
● 关键路径方法(critical path method)解决任务调度问题
package package01; import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.AcyclicLP;
import edu.princeton.cs.algs4.DirectedEdge;
import edu.princeton.cs.algs4.EdgeWeightedDigraph; public class class01
{
private class01() {} public static void main(String[] args)
{
int n = StdIn.readInt(); // 任务数
int source = 2 * n; // 0 ~ n-1 为各任务起点,n ~ 2n-1 为各任务终点
int sink = 2 * n + 1; // 2n 为总起点,2n + 1 为总终点
EdgeWeightedDigraph G = new EdgeWeightedDigraph(2 * n + 2);
for (int i = 0; i < n; i++)
{
double duration = StdIn.readDouble(); // 第一列,任务耗时
G.addEdge(new DirectedEdge(source, i, 0.0)); // 总起点到任务起点的边
G.addEdge(new DirectedEdge(i + n, sink, 0.0)); // 任务终点到总终点的边
G.addEdge(new DirectedEdge(i, i + n, duration)); // 任务起点到任务终点的边 int m = StdIn.readInt(); // 以该任务完成为前提的其他任务数
for (int j = 0; j < m; j++)
{
int precedent = StdIn.readInt(); // 后续任务的编号
G.addEdge(new DirectedEdge(n + i, precedent, 0.0)); // 添加本任务终点到后续任务起点的边
}
} AcyclicLP lp = new AcyclicLP(G, source); // 生成最长路径图,尽量选权值较大的边意味着尽量把任务往前靠
StdOut.println(" job start finish");
StdOut.println("--------------------");
for (int i = 0; i < n; i++)
StdOut.printf("%4d %7.1f %7.1f\n", i, lp.distTo(i), lp.distTo(i + n));
StdOut.printf("Finish time: %7.1f\n", lp.distTo(sink));
}
}
《算法》第四章部分程序 part 17的更多相关文章
- 《算法》第四章部分程序 part 19
▶ 书中第四章部分程序,包括在加上自己补充的代码,有边权有向图的邻接矩阵,FloydWarshall 算法可能含负环的有边权有向图任意两点之间的最短路径 ● 有边权有向图的邻接矩阵 package p ...
- 《算法》第四章部分程序 part 18
▶ 书中第四章部分程序,包括在加上自己补充的代码,在有权有向图中寻找环,Bellman - Ford 算法求最短路径,套汇算法 ● 在有权有向图中寻找环 package package01; impo ...
- 《算法》第四章部分程序 part 16
▶ 书中第四章部分程序,包括在加上自己补充的代码,Dijkstra 算法求有向 / 无向图最短路径,以及所有顶点对之间的最短路径 ● Dijkstra 算法求有向图最短路径 package packa ...
- 《算法》第四章部分程序 part 15
▶ 书中第四章部分程序,包括在加上自己补充的代码,Kruskal 算法和 Boruvka 算法求最小生成树 ● Kruskal 算法求最小生成树 package package01; import e ...
- 《算法》第四章部分程序 part 14
▶ 书中第四章部分程序,包括在加上自己补充的代码,两种 Prim 算法求最小生成树 ● 简单 Prim 算法求最小生成树 package package01; import edu.princeton ...
- 《算法》第四章部分程序 part 10
▶ 书中第四章部分程序,包括在加上自己补充的代码,包括无向图连通分量,Kosaraju - Sharir 算法.Tarjan 算法.Gabow 算法计算有向图的强连通分量 ● 无向图连通分量 pack ...
- 《算法》第四章部分程序 part 9
▶ 书中第四章部分程序,包括在加上自己补充的代码,两种拓扑排序的方法 ● 拓扑排序 1 package package01; import edu.princeton.cs.algs4.Digraph ...
- 《算法》第四章部分程序 part 13
▶ 书中第四章部分程序,包括在加上自己补充的代码,图的前序.后序和逆后续遍历,以及传递闭包 ● 图的前序.后序和逆后续遍历 package package01; import edu.princeto ...
- 《算法》第四章部分程序 part 12
▶ 书中第四章部分程序,包括在加上自己补充的代码,图的几种补充数据结构,包括无向 / 有向符号图,有权边结构,有边权有向图 ● 无向符号图 package package01; import edu. ...
随机推荐
- WEKA结果解读
红括号里面,左边是bad的数目,右边是good数目. TP Rate FP Rate Precision Recall F-Measure ROC Area Class 0.536 ...
- [蓝桥杯]ALGO-122.算法训练_未名湖边的烦恼
问题描述 每年冬天,北大未名湖上都是滑冰的好地方.北大体育组准备了许多冰鞋,可是人太多了,每天下午收工后,常常一双冰鞋都不剩. 每天早上,租鞋窗口都会排起长龙,假设有还鞋的m个,有需要租鞋的n个.现在 ...
- ALGO-147_蓝桥杯_算法训练_4-3水仙花数
问题描述 打印所有100至999之间的水仙花数.所谓水仙花数是指满足其各位数字立方和为该数字本身的整数,例如 =^+^+^. 样例输入 一个满足题目要求的输入范例. 例: 无 样例输出 xxx xxx ...
- WARNING: Package of target [javax.servlet.jsp.jstl.core.LoopTagSupport$1Status@7439e436] or package of member [public int javax.servlet.jsp.jstl.core.LoopTagSupport$1Status.getIndex()] are excluded!
Struts2爆出045漏洞后,将struts版本升级到了2.3.32.但是在验证时发现有些jstl循环未出现预期的结果. debug发现,数据没有问题,断定是前端页面显示出了问题.根据日志信息WAR ...
- Javascript中的原型、原型链(十)
一.原型 每当创建一个函数时,函数就会包含一个prototype属性,这个属性其实相当于一个指针,指向调用该构造函数创建的对象原型. 这个对象原型里面有一个constructor属性,这个属性又指向构 ...
- react表单事件和取值
常见的表单包括输入框,单选框,复选框,下拉框和多文本框,本次主要总结它们在react中如何取值. 输入框 在之前有说过输入框,可以先给input框的value绑定一个值,然后通过input框的改变事件 ...
- 其他类想使用unittest的断言方法,就import unittest的框架,继承他,使用他里面的方法
在断言层 也可以同样用这个方法
- 05-RARP: 逆地址解析协议
具有本地磁盘的系统引导时,一般是从磁盘上的配置文件中读取I P地址.但是无盘机,如X终端或无盘工作站,则需要采用其他方法来获得I P地址. 网络上的每个系统都具有唯一的硬件地址,它是由网络接口生产厂家 ...
- 模拟远程SSH执行命令的编解码说明
模拟一个SSH“远程”执行命令并获取命令结果的一个程序: 1.在C/S架构下,当客户端与服务器建立连接(这里以TCP为例)后,二者可以不断的进行数据交互.SSH远程可以实现的效果是客户端输入命令可以在 ...
- MybatisUtil的使用,便于产生SqlSession
简化代码,实现一个静态的工具类来实现获取SqlSession 主要有getSqlSessionFactory()和getSqlSession() public class MybatisUtil { ...