2018.12.17 bzoj1406 : [AHOI2007]密码箱(简单数论)
传送门
简单数论暴力题。
题目简述:要求求出所有满足x2≡1mod  nx^2\equiv1 \mod nx2≡1modn且0≤x<n0\le x<n0≤x<n的xxx
考虑到使用平方差公式变形。
(x−1)(x+1)≡0mod  n(x-1)(x+1)\equiv0 \mod n(x−1)(x+1)≡0modn
即(x−1)(x+1)=kn(x-1)(x+1)=kn(x−1)(x+1)=kn
然后就可以枚举nnn大于sqrtnsqrt_nsqrtn的约数ddd来求出可能的xxx。
由上面的式子知道d∣x−1d|x-1d∣x−1或者d∣x+1d|x+1d∣x+1因此就很好判断了。
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
int n,tot;
vector<int>ans,stk;
int main(){
scanf("%d",&n);
for(ri i=1;i*i<=n;++i)if(n%i==0)stk.push_back(n/i);
for(ri i=stk.size()-1;~i;--i){
int d=stk[i];
for(ri j=d;j<=n;j+=d){
if((j-2)%(n/d)==0)ans.push_back(j-1);
if((j+2)%(n/d)==0)ans.push_back(j+1);
}
}
sort(ans.begin(),ans.end()),tot=unique(ans.begin(),ans.end())-ans.begin()-1;
puts("1");
for(ri i=0;i<tot;++i)cout<<ans[i]<<'\n';
return 0;
}
2018.12.17 bzoj1406 : [AHOI2007]密码箱(简单数论)的更多相关文章
- [BZOJ1406][AHOI2007]密码箱(数论)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1406 分析: (x+1)(x-1)是n的倍数 于是可以把n分解成n=ab,则a为(x+ ...
- 调试大叔V2.1.0(2018.12.17)|http/s接口调试、数据分析程序员辅助开发神器
2018.12.17 - 调试大叔 V2.1.0*升级http通讯协议版本,完美解决Set-Cookie引起的系列问题:*新增Content-Type编码格式参数,支持保存(解决模拟不同网站或手机请求 ...
- BZOJ1406 [AHOI2007]密码箱 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1406 题意概括 求所有数x,满足 x<n 且 x2≡1 (mod n). n<=2 ...
- 2018.12/17 function 的闭包
1.闭包:函数在调用的时候会形成一个私有的作用域,对内部变量起到保护的作用,这就是闭包. 2.变量销毁: 1.人为销毁 var a=12; a=null 2.自然销毁 函数调用完成之后 浏览器会自 ...
- 2018.12.18 bzoj2242: [SDOI2011]计算器(数论)
传送门 数论基础题. 对于第一种情况用快速幂,第二种用exgcdexgcdexgcd,第三种用bsgsbsgsbsgs 于是自己瞎yyyyyy了一个bsgsbsgsbsgs的板子(不知道是不是数据水了 ...
- 2018.12.17 bzoj3667: Rabin-Miller算法(Pollard-rho)
传送门 Pollard−rhoPollard-rhoPollard−rho板题. 题意简述:给出几个数,让你判断是不是质数,如果不是质数就求出其最大质因子,数的大小为1e181e181e18以内. 先 ...
- 2018.12.17 bzoj4802: 欧拉函数(Pollard-rho)
传送门 Pollard−rhoPollard-rhoPollard−rho模板题. 题意简述:求ϕ(n),n≤1e18\phi(n),n\le 1e18ϕ(n),n≤1e18 先把nnn用Pollar ...
- 2018.12.17 hdu2138 How many prime numbers(miller-rbin)
传送门 miller−rabbinmiller-rabbinmiller−rabbin素数测试的模板题. 实际上miller−rabinmiller-rabinmiller−rabin就是利用费马小定 ...
- 2018.09.17 atcoder Digit Sum(数论)
传送门 数论好题啊. 首先对于b<=sqrt(n)b<=sqrt(n)b<=sqrt(n)的情况直接枚举b判断一下就行了. 下面谈一谈如何解决b>sqrt(n)b>sqr ...
随机推荐
- UVa 10129 Play on Words(有向图欧拉路径)
Some of the secret doors contain a very interesting word puzzle. The team of archaeologists has to s ...
- jsp选项过长自动换行
自动换行前是这样的 从源码发现“打发的所发生的7”所在span跨行了,宽度为整行的宽度,不再是自身的实际宽度(一列时所占的宽度) 我的思路是要把这个换行元素前加上<br/>,使得该元素换行 ...
- RPC 框架之 Goole protobuf
Goole 的 protobuf 即 Protocol Buffers 是一个很好的RPC 框架,支持 c++ python java 接下来进行官方文档的解读,然后你会对protobuf 会有 ...
- 微信公众号开发(5)---使用开源组件开发公众号OAuth2.0网页授权授权登录
搞清微信公众号授权登录的步骤步骤,我们的开发就完成了一大步 献上github 地址: https://github.com/Wechat-Group/weixin-java-tools/wiki/MP ...
- 2017-2018-2 20165315 实验二《Java面向对象程序设计》实验报告
2017-2018-2 20165315 实验二<Java面向对象程序设计>实验报告 一.实验内容及步骤 1.初步掌握单元测试和TDD 单元测试 任务一:三种代码 用程序解决问题时,要学会 ...
- Spring事务<tx:annotation-driven/>的理解
在使用Spring的时候,配置文件中我们经常看到 annotation-driven 这样的注解,其含义就是支持注解,一般根据前缀 tx.mvc 等也能很直白的理解出来分别的作用. <tx:an ...
- 5A - 超级楼梯
有一楼梯共M级,刚开始时你在第一级,若每次只能跨上一级或二级,要走上第M级,共有多少种走法? Input 输入数据首先包含一个整数N,表示测试实例的个数,然后是N行数据,每行包含一个整数M(1< ...
- 团队作业之Rookie also want to fly
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 在时代的浪潮下,单人编程,结对编程已经无法满 ...
- RoCE vs iWARP
两种以太网 RDMA 协议: iWARP 和 RoCE 转载 2017年03月08日 16:10:09 1510 http://weibo.com/p/1001603936363903889917?m ...
- iOS.Library.Architecture
在用file查看library的architechture时有以下输出: $ file WebPWebP: Mach-O universal binary with 3 architecturesWe ...