http://www.lydsy.com/JudgeOnline/problem.php?id=2001 (题目链接)

题意

  给出一张无向图,$m$组操作,每次修改一条边的权值,对于每次操作输出修改之后的图的最小生成树边权和。

Solution

  nnd开了半个小时的脑洞,然并卵。感谢这位大爷的代码与题解:http://blog.csdn.net/u013368721/article/details/39183033

  我们对时间cdq分治,如何在每一层向下递归的时候减小问题规模呢,两个关键的操作:

  Reduction(删除无用边):
    把待修改的边标为INF,做一遍MST,把做完后不在MST中的非INF边删去(因为这些边在原图的情况下肯定更不可能选进MST的边集,即无用边);
  Contraction(缩必须边,缩点):
    把待修改的边标为-INF,做一遍MST,在MST中的非-INF边为必须边(因为这些边在原图的情况下也一定会被选进MST),缩点。

  所以在每一层我们按顺序,先缩点,然后删边,这样子缩小了问题规模后往下递归。为什么这样的复杂度就是对的呢,我大概YY了一下。

  在我们当前处理的这一层中,只有既不是必须边也不是无用边的边才会记入下一层的图中。考虑既这种边需要满足哪些条件。

  不是必须边:有某条待修改的边可以代替这条边。

  不是无用边:在非待修改的边中这条边无法被替代。

  这么说来这些边是与待修改边息息相关的,在非待修改的边中这条边独一无二,而它所起到的作用又可以被某条待修改的边所代替,那么待修改的边与这种边大概是可以一一对应的。而待修改的边每往下递归一层就会减半,所以问题的规模每次也会减半。嘿嘿,极不严谨的证明(其实不过是口胡)

  好吧请忽略上面的口胡,我们来严谨的证明一下。

  设询问边的集合为$S$,图中的边集$E$,图中的点集$V$。两种操作可以看成是求了$G(V,E-S)$的最小生成树。

  Reduction:最坏情况下最小生成树里面的边全都不是$|S|$上的,我们至少可以把边数缩小为$|V|-1+|S|$。

  Contraction:最坏情况下最小生成树里面的边全都是$|S|$上的,我们至少可以把点数缩小为$|S|+1$。

  所以我们缩点后,再删边,下一层的图的规模就是与$|S|$同级的了,复杂度得到了保证。

细节

  清空并查集的时候不要破坏了复杂度。

代码

// bzoj2001
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf (1ll<<30)
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std; const int maxn=20010,maxm=50010;
int n,m,Q,nv[20],ne[20],val[maxm];
LL ans[maxm];
struct ask {int id,w;}q[maxm];
struct edge {
int u,v,w,id;
friend bool operator < (edge a,edge b) {return a.w<b.w;}
}e[20][maxm]; namespace Unionset {
int fa[maxn],size[maxn];
int find(int x) {
return fa[x]==x ? x : fa[x]=find(fa[x]);
}
int merge(int x,int y) {
x=find(x),y=find(y);
if (x==y) return 0;
if (size[x]>size[y]) swap(x,y);
fa[x]=y,size[y]+=size[x];
return 1;
}
void clear(int x) {
for (int i=1;i<=x;i++) fa[i]=i,size[i]=1;
}
}
using namespace Unionset; namespace CDQ {
int id[maxm],vis[maxm],newv[maxn];
edge tmp[maxm],L[maxm];
void contraction(int &N,int &M,LL &res) {
int tn=0,tm=0;
sort(L+1,L+1+M);clear(N);
for (int i=1;i<=M;i++) vis[i]=0;
for (int i=1;i<=M;i++) {
if (merge(L[i].u,L[i].v) && L[i].w!=-inf) vis[i]=1,res+=L[i].w;
else tmp[++tm]=L[i];
}
clear(N);
for (int i=1;i<=M;i++) if (vis[i]) merge(L[i].u,L[i].v);
for (int i=1;i<=N;i++) if (find(i)==i) newv[i]=++tn;
for (int i=1;i<=N;i++) newv[i]=newv[find(i)];
for (int i=1;i<=tm;i++) {
L[i]=tmp[i];
id[L[i].id]=i;
L[i].u=newv[L[i].u],L[i].v=newv[L[i].v];
}
N=tn,M=tm;
}
void reduction(int &N,int &M) {
int tm=0;
sort(L+1,L+1+M);clear(N);
for (int i=1;i<=M;i++)
if (merge(L[i].u,L[i].v) || L[i].w==inf) id[L[i].id]=++tm,L[tm]=L[i];
M=tm;
}
void solve(int l,int r,int c,LL res) {
int N=nv[c],M=ne[c];
if (l==r) val[q[l].id]=q[l].w;
for (int i=1;i<=M;i++) {
e[c][i].w=val[e[c][i].id];
L[i]=e[c][i];
id[L[i].id]=i;
}
if (l==r) {
sort(L+1,L+1+M);clear(N);
for (int i=1;i<=M;i++) if (merge(L[i].u,L[i].v)) res+=L[i].w;
ans[l]=res;return;
}
for (int i=l;i<=r;i++) L[id[q[i].id]].w=-inf;
contraction(N,M,res);
for (int i=l;i<=r;i++) L[id[q[i].id]].w=inf;
reduction(N,M);
nv[c+1]=N,ne[c+1]=M;
for (int i=1;i<=M;i++) e[c+1][i]=L[i];
int mid=(l+r)>>1;
solve(l,mid,c+1,res);solve(mid+1,r,c+1,res);
}
} int main() {
scanf("%d%d%d",&n,&m,&Q);
nv[0]=n,ne[0]=m;
for (int i=1;i<=m;i++) {
scanf("%d%d%d",&e[0][i].u,&e[0][i].v,&e[0][i].w);
e[0][i].id=i;val[i]=e[0][i].w;
}
for (int i=1;i<=Q;i++) scanf("%d%d",&q[i].id,&q[i].w);
CDQ::solve(1,Q,0,0);
for (int i=1;i<=Q;i++) printf("%lld\n",ans[i]);
return 0;
}

【bzoj2001】 Hnoi2010—City 城市建设的更多相关文章

  1. BZOJ2001 [Hnoi2010]City 城市建设 CDQ分治

    2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec  Memory Limit: 162 MB Description PS国是一个拥有诸多城市的大国,国王Lou ...

  2. BZOJ2001 [Hnoi2010]City 城市建设 【CDQ分治 + kruskal】

    题目链接 BZOJ2001 题解 CDQ分治神题... 难想难写.. 比较朴素的思想是对于每个询问都求一遍\(BST\),这样做显然会爆 考虑一下时间都浪费在了什么地方 我们每次求\(BST\)实际上 ...

  3. BZOJ2001: [Hnoi2010]City 城市建设

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2001 cdq分治+重建图. 可以保留当前一定会被选的非修改边然后把点缩起来.这样的话每次点数至 ...

  4. 【BZOJ2001】 [Hnoi2010]City 城市建设

    BZOJ2001 [Hnoi2010]City 城市建设 Solution 我们考虑一下这个东西怎么求解? 思考无果...... 咦? 好像可以离线cdq,每一次判断一下如果这条边如果不选就直接删除, ...

  5. BZOJ 2001: [Hnoi2010]City 城市建设

    2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1132  Solved: 555[Submit][ ...

  6. 2001: [Hnoi2010]City 城市建设 - BZOJ

    DescriptionPS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁.Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费.Louis希望建造最少的 ...

  7. 【刷题】BZOJ 2001 [Hnoi2010]City 城市建设

    Description PS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁.Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费.Louis希望建造最少 ...

  8. [HNOI2010]CITY 城市建设

    问题: 给一张图,支持边长度修改,求MST 题解: 自己想就想不到了.. 考虑cdq分治 1.首先求出一定有用的边 对于未处理的边,全部设为-INF,求一次MST,出现在MST上的边一定最终出现在后面 ...

  9. 【HNOI2010】城市建设(对时间分治 & Kruskal)

    Description \(n\) 个点 \(m\) 条边的带边权无向图.\(q\) 次操作,每次修改一条边的权值. 求每次修改后的最小生成树的边权和. Hint \(1\le n\le 2\time ...

随机推荐

  1. Android开发——RecyclerView特性以及基本使用方法(一)

    )关于点击事件,没有像ListView那样现成的API,但是自己封装起来也不难,而且我们使用ListView时,如果item中有可点击组件,那么点击事件的冲突也是一个问题,而在RecyclerView ...

  2. [CF966F]May Holidays[分块+虚树]

    题意 给定 \(n\) 个点的树,初始所有颜色都是 \(0\) ,每个点有一个阈值 \(t\) ,每次可能会让一个点的颜色异或1,问每次操作之后有多少个点满足子树内的颜色为 \(1\) 的点的个数 \ ...

  3. Spring Boot(十一):Spring Boot 中 MongoDB 的使用

    MongoDB 是最早热门非关系数据库的之一,使用也比较普遍,一般会用做离线数据分析来使用,放到内网的居多.由于很多公司使用了云服务,服务器默认都开放了外网地址,导致前一阵子大批 MongoDB 因配 ...

  4. Java设计模式-建造者(Builder)模式

    目录 由来 使用 1. 定义抽象 Builder 2. 定义具体 Builder类 3. 定义具体 Director类 4. 测试 定义 文字定义 结构图 优点 举例 @ 最近在看Mybatis的源码 ...

  5. 自制一个H5图片拖拽、裁剪插件(原生JS)

    前言 如今的H5运营活动中,有很多都是让用户拍照或者上传图片,然后对照片加滤镜.加贴纸.评颜值之类的.尤其是一些拍照软件公司的运营活动几乎全部都是这样的. 博主也做过不少,为了省事就封装了一个简单的图 ...

  6. 异步编程之asyncio简单介绍

    引言: python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病.然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板. as ...

  7. Python数据信号处理库RadioDSP: 引入ThinkDSP实现思想

    RadioDSP是针对无线通信领域的数字信号处理库,它采用了ThinkDSP的思想,对于无线通信中的IQ信号可以绘制频谱图和时域图.目前项目还在起始阶段,详细的代码可以参考链接: https://gi ...

  8. FFMpeg笔记(六) 滤镜命名规则及使用libavfilter对视频尺寸进行裁切

    在ffmpeg框架中,滤镜(filter)功能通过libavfilter库实现. 一个filter可以同时有多个输入和输出.以图为例: 图中的一系列操作共使用了四个filter,分别是    spli ...

  9. sqlserver批量删除字段 msrepl_tran_version

    屁话不多说. 原因: msrepl_tran_version由于有非空约束.所以不能直接删除. --###############################################--1 ...

  10. C++ 多态Polymorphism 介绍+动态绑定、静态绑定

    什么是多态? 多态(polymorphism)一词最初来源于希腊语polumorphos,含义是一种物质的多种形态. 在专业术语中,多态是一种运行时绑定机制(run-time binding) ,通过 ...