[THUSC2017]巧克力[斯坦纳树、随机化]
题意
分析
- 对于第一问,如果颜色数量比较少的话可以 \(\binom{cnt}{k}\) 枚举最终连通块中的 \(k\) 种颜色,然后利用斯坦纳树求解。
- 如果颜色比较多,考虑将所有的颜色重新随机赋值 \([0,k-1]\) 然后跑斯坦纳树。
貌似还可以证明:最终的连通块中一定恰好只有 \(k\) 种颜色。那么只要最终答案中那 \(k\) 种颜色随机到的是不同的颜色,就可以跑出正确答案,成功的概率是 \(\frac{k!}{k^k}\) ,而且最优解还可能不唯一,所以做 100 次失败的概率就大概只有 \(1\%\) 了。 - 考虑第二问,首先二分一个答案 \(mid\) ,然后将所有 \(\le mid\) 的权值设置成 -1 ,否则设置成1,比较的时候就比较一个二元组(点数,权值和)即可。也容易证明这样的比较方式在我们使用 \(dijkstra\) 时仍然是正确的。
代码
[THUSC2017]巧克力[斯坦纳树、随机化]的更多相关文章
- loj2977 巧克力 (斯坦纳树+随机化)
考虑颜色比较少的时候,第一问可以直接斯坦纳树 第二问考虑二分,每次把每格的权值给成1000+[a[i]>m],就是在个数最少的基础上尽量选小于等于m的 然而颜色太多不能直接做,但可以把每种颜色映 ...
- LOJ#2977. 「THUSCH 2017」巧克力(斯坦纳树+随机化)
题目 题目 做法 考虑部分数据(颜色较少)的: 二分中位数\(mid\),将\(v[i]=1000+(v[i]>mid)\) 具体二分操作:然后求出包含\(K\)种颜色的联通快最小的权值和,判断 ...
- 洛谷 P7450 - [THUSCH2017] 巧克力(斯坦纳树+随机化)
洛谷题面传送门 9.13 补之前 8.23 做的题,不愧是鸽子 tzc( 首先我们先来探讨一下如果 \(c_{i,j}\le k\) 怎么做,先考虑第一问.显然一个连通块符合条件当且仅当它能够包含所有 ...
- 【THUSC2017】【LOJ2977】巧克力 斯坦纳树
题目大意 有一个网格(或者你可以认为这是一个图),每个点都有颜色 \(c_i\) 和点权 \(a_i\). 求最小的连通块,满足这个连通块内点的颜色数量 \(\geq k\).在满足点数最少的前提下, ...
- LOJ 2997 「THUSCH 2017」巧克力——思路+随机化+斯坦纳树
题目:https://loj.ac/problem/2977 想到斯坦纳树.但以为只能做 “包含一些点” 而不是 “包含一些颜色” .而且不太会处理中位数. 其实 “包含一些颜色” 用斯坦纳树做也和普 ...
- FJoi2017 1月20日模拟赛 直线斯坦纳树(暴力+最小生成树+骗分+人工构造+随机乱搞)
[题目描述] 给定二维平面上n个整点,求该图的一个直线斯坦纳树,使得树的边长度总和尽量小. 直线斯坦纳树:使所有给定的点连通的树,所有边必须平行于坐标轴,允许在给定点外增加额外的中间节点. 如下图所示 ...
- 【BZOJ2595】游览计划(状压DP,斯坦纳树)
题意:见题面(我发现自己真是越来越懒了) 有N*M的矩阵,每个格子有一个值a[i,j] 现要求将其中的K个点(称为关键点)用格子连接起来,取(i,j)的费用就是a[i,j] 求K点全部连通的最小花费以 ...
- HDU 4085 斯坦纳树
题目大意: 给定无向图,让前k个点都能到达后k个点(保护地)中的一个,而且前k个点每个需要占据后k个中的一个,相互不冲突 找到实现这个条件达到的选择边的最小总权值 这里很容易看出,最后选到的边不保证整 ...
- hdu4085 Peach Blossom Spring 斯坦纳树,状态dp
(1)集合中元素表示(1<<i), i从0开始 (2)注意dp[i][ss] = min(dp[i][ss], dp[i][rr | s[i]] + dp[i][(ss ^ rr) | s ...
随机推荐
- LeetCoder题解之Find All Anagrams in a String
1.题目描述 2.题目分析 直接使用 哈希表记录子串的信息,然后对比两个哈希表信息即可 3.代码 vector<int> findAnagrams(string s, string p) ...
- [zz]VC2005-应用程序正常初始化失败-0xc0150002
最近几天被这个问题困惑了许久. 不禁感叹微软的东东真是越做越烂了,也终于明白了时隔12年大家仍然死守VC6的原因.. 用VC2005编译的程序,编译时没有任何错误,但是运行时就是提示“应用程序正常初始 ...
- excel文件使用navicat工具导入mysql的方法
1.在excel文件的sheet上,第1行下面插入一行,对应DB里面的字段名称,方便后面导入时做字段匹配: 2.使用Navicat ,打开工具,选择表所在的数据库,然后点击数据库名字,右键Tables ...
- ODS设计
1.数据调研 2.确定数据范围 需要把上端应用需求与ODS数据范围进行验证,以确保应用所需的数据都已经从业务系统中抽取出来,并且得到了很好的组织,以ER模型表示数据主题关系 3.根据数据范围进行进一步 ...
- (转)glew的安装
http://blog.sina.com.cn/s/blog_858820890100vbys.html 下载链接: https://sourceforge.net/project/downloadi ...
- It was not possible to find any compatible framework version
It was not possible to find any compatible framework version The specified framework 'Microsoft.NETC ...
- 使用Socket开发http服务器时碰到的问题及处理方法
1. 前言 最近正在为QA测试开发压力测试框架,要为测试人员提供一个结果的图形化表示界面.为了展示数据的及时性,不得不使用lua语言实现一个http服务器.由于http服务需要提供的服务比较简单 ...
- swift类型擦除的定义-swift的类型擦除只是一个类型高低阶转换的游戏。
所谓swift的类型擦除是指: moand转换: 通过技术手段(通常是包装器),将具体类型的类型信息擦除掉了,只将类型的(某一个侧面的)抽象信息(通常指的是类型尊从的协议.接口.或基类)暴露出来. A ...
- 基于duxshop遍历无限级分销用户的纵向递归
/**获取基准数据 * @param $ids 父id 多个逗号分隔 * @return array */ public function saleBase($ids) { $data=$this-& ...
- ACM模拟赛
今天是毕业的学长给高二的同学测试.组队比赛,ACM赛制,于是就愉快的和学姐一队啦. 看到英文题面感到恐慌,不过好在不难读懂. A:并没有什么技术含量的模拟题: B:字符串题,给定一些比赛和每个队胜利的 ...