等价类计数(Polya定理/Burnside引理)学习笔记
参考:刘汝佳《算法竞赛入门经典训练指南》
感觉是非常远古的东西了,几乎从来没有看到过需要用这个的题,还是学一发以防翻车。
置换:排列的一一映射。置换乘法相当于函数复合。满足结合律,不满足交换律。
置换的循环分解:即将置换看成一张有向图,分解成若干循环。循环的数量称为循环节。
以置换集合来描述等价关系。如果存在一个置换将一个方案映射到另一个方案,则这两个方案等价。置换集合应当构成置换群。
不动点:方案s经过置换f不变,则s为f的不动点。
Burnside引理:等价类数量=所有置换的不动点数量的平均值。
Polya定理:对于某置换的不动点,显然每个循环内颜色相同,于是不动点数量即为颜色数循环节数。将其代入Burnside引理即得Polya定理。(为什么这是定理上面是引理啊)
没了。
等价类计数(Polya定理/Burnside引理)学习笔记的更多相关文章
- poj 2409 Let it Bead【polya定理+burnside引理】
两种置换 旋转:有n种,分别是旋转1个2个--n个,旋转i的循环节数位gcd(i,n) 翻转:分奇偶,对于奇数个,只有一个珠子对一条边的中点,循环节数为n/2+1:对于偶数个,有珠子对珠子和边对边,循 ...
- poj 1286 Necklace of Beads【polya定理+burnside引理】
和poj 2409差不多,就是k变成3了,详见 还有不一样的地方是记得特判n==0的情况不然会RE #include<iostream> #include<cstdio> us ...
- 【loj6538】烷基计数 加强版 加强版 Burnside引理+多项式牛顿迭代
别问我为啥突然刷了道OI题,也别问我为啥花括号不换行了... 题目描述 求含 $n$ 个碳原子的本质不同的烷基数目模 $998244353$ 的结果.$1\le n\le 10^5$ . 题解 Bur ...
- 矩阵树定理(Matrix Tree)学习笔记
如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/64 ...
- 「中国剩余定理CRT」学习笔记
设正整数$m_1, m_2, ... , m_r$两两互素,对于同余方程组 $x ≡ a_1 \ (mod \ m_1)$ $x ≡ a_2 \ (mod \ m_2)$ $...$ $x ≡ a_r ...
- 【poj2409】Let it Bead Polya定理
题目描述 用 $c$ 种颜色去染 $r$ 个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $r·c\le 32$ . 题解 Polya定理 Burnside引理 ...
- @总结 - 12@ burnside引理与pólya定理
目录 @0 - 参考资料@ @1 - 问题引入@ @2 - burnside引理@ @3 - pólya定理@ @4 - pólya定理的生成函数形式@ @0 - 参考资料@ 博客1 @1 - 问题引 ...
- Scala学习笔记及与Java不同之处总结-从Java开发者角度
Scala与Java具有很多相似之处,但又有很多不同.这里主要从一个Java开发者的角度,总结在使用Scala的过程中所面临的一些思维转变. 这里仅仅是总结了部分两种语言在开发过程中的不同,以后会陆续 ...
- 等价类计数:Burnside引理 & Polya定理
提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ ...
随机推荐
- Android soundpool初探
内容:本编播客主要讲解一下“即时音效”: 特点:快,短. 在播放这类时间短但是要求反应迅速的的音效,就不能够用不能够使用播放时间较长的音乐播放技术了,而应该采取soundpool技术来播放. soun ...
- C. Sad powers
You're given Q queries of the form (L, R). For each query you have to find the number of such x that ...
- 从源代码解释Android事件分发机制
在ViewRootImpl的setView方法中.用户的触摸按键消息是体如今窗体上的.而windowManagerService则是管理这些窗体,它一旦接收到用户对窗体的一些触摸按键消息,会进行对应的 ...
- jpbm工作流框架
一:JBPM是什么?有什么用?能解决什么问题? 现实生活中有很多需要走一些流程的过程,比如请假流程,报销流程等,使用工作流框架,即可写一个流程即可,添加流程时不在繁琐的建立新的各种配置. 1:jBPM ...
- WPF后台线程更新UI
0.讲点废话 最近在做一个文件搜索的小软件,当文件多时,界面会出现假死的状况,于是乎想到另外开一个后台线程,更新界面上的ListView,但是却出现我下面的问题. 1.后台线程问题 2年前写过一个软件 ...
- WPF编程,通过Double Animation动态缩放控件的一种方法。
原文:WPF编程,通过Double Animation动态缩放控件的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/art ...
- Android开发——监听Android手机的网络状态
0. 前言 在Android开发中监听手机的网络状态是一个常见的功能,比如在没网的状态下进行提醒并引导用户打开网络设置,或者在非wifi状态下开启无图模式等等.因此本篇将网上的资料进行了整理总结,方便 ...
- Ubuntu+Qt+OpenCV+FFMPEG环境搭建
基于ubuntu16.04下opencv3.2安装配置 Ubuntu16.04下安装FFmpeg(超简单版) Qt编译后提示: /usr/bin/ld: 找不到 -lGL 安装libGL: sudo ...
- python中eval函数作用
eval函数就是实现list.dict.tuple与str之间的转化str函数把list,dict,tuple转为为字符串 一.字符串转换成列表 a = "[[1,2], [3,4], [5 ...
- R语言学习 第三篇:数据框
数据框(data.frame)是最常用的数据结构,用于存储二维表(即关系表)的数据,每一列存储的数据类型必须相同,不同数据列的数据类型可以相同,也可以不同,但是每列的行数(长度)必须相同.数据框的每列 ...