参考:刘汝佳《算法竞赛入门经典训练指南》

  感觉是非常远古的东西了,几乎从来没有看到过需要用这个的题,还是学一发以防翻车。

  置换:排列的一一映射。置换乘法相当于函数复合。满足结合律,不满足交换律。

  置换的循环分解:即将置换看成一张有向图,分解成若干循环。循环的数量称为循环节。

  以置换集合来描述等价关系。如果存在一个置换将一个方案映射到另一个方案,则这两个方案等价。置换集合应当构成置换群。

  不动点:方案s经过置换f不变,则s为f的不动点。

  Burnside引理:等价类数量=所有置换的不动点数量的平均值。

  Polya定理:对于某置换的不动点,显然每个循环内颜色相同,于是不动点数量即为颜色数循环节数。将其代入Burnside引理即得Polya定理。(为什么这是定理上面是引理啊)

  没了。

等价类计数(Polya定理/Burnside引理)学习笔记的更多相关文章

  1. poj 2409 Let it Bead【polya定理+burnside引理】

    两种置换 旋转:有n种,分别是旋转1个2个--n个,旋转i的循环节数位gcd(i,n) 翻转:分奇偶,对于奇数个,只有一个珠子对一条边的中点,循环节数为n/2+1:对于偶数个,有珠子对珠子和边对边,循 ...

  2. poj 1286 Necklace of Beads【polya定理+burnside引理】

    和poj 2409差不多,就是k变成3了,详见 还有不一样的地方是记得特判n==0的情况不然会RE #include<iostream> #include<cstdio> us ...

  3. 【loj6538】烷基计数 加强版 加强版 Burnside引理+多项式牛顿迭代

    别问我为啥突然刷了道OI题,也别问我为啥花括号不换行了... 题目描述 求含 $n$ 个碳原子的本质不同的烷基数目模 $998244353$ 的结果.$1\le n\le 10^5$ . 题解 Bur ...

  4. 矩阵树定理(Matrix Tree)学习笔记

    如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/64 ...

  5. 「中国剩余定理CRT」学习笔记

    设正整数$m_1, m_2, ... , m_r$两两互素,对于同余方程组 $x ≡ a_1 \ (mod \ m_1)$ $x ≡ a_2 \ (mod \ m_2)$ $...$ $x ≡ a_r ...

  6. 【poj2409】Let it Bead Polya定理

    题目描述 用 $c$ 种颜色去染 $r$ 个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $r·c\le 32$ . 题解 Polya定理 Burnside引理 ...

  7. @总结 - 12@ burnside引理与pólya定理

    目录 @0 - 参考资料@ @1 - 问题引入@ @2 - burnside引理@ @3 - pólya定理@ @4 - pólya定理的生成函数形式@ @0 - 参考资料@ 博客1 @1 - 问题引 ...

  8. Scala学习笔记及与Java不同之处总结-从Java开发者角度

    Scala与Java具有很多相似之处,但又有很多不同.这里主要从一个Java开发者的角度,总结在使用Scala的过程中所面临的一些思维转变. 这里仅仅是总结了部分两种语言在开发过程中的不同,以后会陆续 ...

  9. 等价类计数:Burnside引理 & Polya定理

    提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ ...

随机推荐

  1. Kubernetes哪一点最打动你?或者,它发布过的哪一项特性让你认为最厉害?

    kubernates 打动我的地方应该是他解决了docker 的一个痛点,各个docker之间的通信以及集成管理.因为这跟微服务很像,微服务之间也是需要通信和统一管理.知识总是相同的,在这里就体现出来 ...

  2. 【转】PHP之FastCGI与mod_php详解

    原文地址:http://article.gitos.cn/2015/Aurthur/PHP-Mod-PHP-And-Fast-CGI-Explain.html 背景 PHP最常用的方式是以模块的方式( ...

  3. 【小程序】<image>图片实现宽度100%时,高度自适应

    *.wxss样式设置 .img{ width:100% } *.wxml给<image>标签添加属性  mode="widthFix" <image class= ...

  4. 「PKUSC2018」最大前缀和 LOJ#6433&BZOJ5369

    分析: 这个题非常的棒,目测如果去了能AC... 我们考虑一个序列是如何构成的——一个后缀>0的序列,和一个前缀<0的序列 问题可以简化为求出当前缀和为状态S的所有数的和的时候,S满足后缀 ...

  5. Django Rest Framework源码剖析(七)-----分页

    一.简介 分页对于大多数网站来说是必不可少的,那你使用restful架构时候,你可以从后台获取数据,在前端利用利用框架或自定义分页,这是一种解决方案.当然django rest framework提供 ...

  6. 20155218《网络对抗》Exp8 Web基础

    20155218<网络对抗>Exp8 Web基础 1.基础问题回答 1.什么是表单? 表单是一个包含表单元素的区域,表单元素是允许用户在表单中(比如:文本域.下拉列表.单选框.复选框等等) ...

  7. Android开发——断点续传原理以及实现

    0.  前言 在Android开发中,断点续传听起来挺容易,在下载一个文件时点击暂停任务暂停,点击开始会继续下载文件.但是真正实现起来知识点还是蛮多的,因此今天有时间实现了一下,并进行记录.本文原创, ...

  8. mfc 嵌套类

    嵌套类 一. 嵌套类 嵌套类的定义 将某个类的定义放在另一个类的内部,这样的类定义,叫嵌套类. class AAA { int aaa; class BBB { int bbb; //其它成员或者函数 ...

  9. Jq_浏览器兼容性及其浏览器版本

    JQuery 中用 方法 jQuery.browser 来判断浏览器,返回值可以为: safari opera msie mozilla. 当然有时候我们还需要区分版本 这就要用到 jQuery.br ...

  10. centos7 RabbitMQ部署

    一.RabbitMQ简单介绍在日常工作环境中,你是否遇到过两个(多个)系统间需要通过定时任务来同步某些数据?你是否在为异构系统的不同进程间相互调用.通讯的问题而苦恼.挣扎?如果是,那么恭喜你,消息服务 ...