[bzoj5294]二进制
首先可以发现$2^k$模3意义下有循环节,也就是1,-1,1,-1……
考虑对于x个1,y个0,判断是否存在3的倍数
1.x为偶数时一定可以,选择等量的1和-1即可
2.x为奇数,要满足$x\ge 3$且$y\ge 2$,这是可以用3个0*(-1)和3个1*1来抵消掉(如果y=2时也可以,因为此时总共有奇数位),同时$x-3$显然为偶数
看上去难以维护,考虑反过来,求不是3的倍数的区间个数,那么即要求$x=1$或x为奇数且$y=0/1$
线段树维护区间,对于每一个区间维护0的数量,1的数量和一个三维数组a[3][4][3]表示在任意/以左端点为开头/右端点为结尾的区间中,x为0/1/非0偶数/非1奇数,y为0/1/(>1)的数量,转移详见代码(比较丑陋)

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 #define ll long long
8 struct ji{
9 int s[2];
10 ll a[3][4][3];
11 }o,f[N<<2];
12 int n,m,p,x,y,a[N];
13 int fx(int x){
14 if (x<2)return x;
15 return ((x&1)+2);
16 }
17 int fy(int y){
18 return min(y,2);
19 }
20 ji up(ji x,ji y){
21 if (x.s[0]<0)return y;
22 if (y.s[0]<0)return x;
23 for(int i=0;i<2;i++)o.s[i]=x.s[i]+y.s[i];
24 memset(o.a[0],0,sizeof(o.a[0]));
25 memcpy(o.a[1],x.a[1],sizeof(o.a[1]));
26 memcpy(o.a[2],y.a[2],sizeof(o.a[2]));
27 for(int i1=0;i1<4;i1++)
28 for(int j1=0;j1<3;j1++){
29 o.a[0][i1][j1]+=x.a[0][i1][j1]+y.a[0][i1][j1];
30 o.a[1][fx(i1+x.s[1])][fy(j1+x.s[0])]+=y.a[1][i1][j1];
31 o.a[2][fx(i1+y.s[1])][fy(j1+y.s[0])]+=x.a[2][i1][j1];
32 for(int i2=0;i2<4;i2++)
33 for(int j2=0;j2<3;j2++)
34 o.a[0][fx(i1+i2)][fy(j1+j2)]+=x.a[2][i1][j1]*y.a[1][i2][j2];
35 }
36 return o;
37 }
38 void update(int k,int l,int r,int x,int y){
39 if (l==r){
40 f[k].s[y]=1;
41 f[k].s[y^1]=0;
42 memset(f[k].a,0,sizeof(f[k].a));
43 for(int i=0;i<3;i++)f[k].a[i][y][y^1]=1;
44 return;
45 }
46 if (x<=mid)update(L,l,mid,x,y);
47 else update(R,mid+1,r,x,y);
48 f[k]=up(f[L],f[R]);
49 }
50 ji query(int k,int l,int r,int x,int y){
51 if ((l>y)||(x>r))return f[0];
52 if ((x<=l)&&(r<=y))return f[k];
53 return up(query(L,l,mid,x,y),query(R,mid+1,r,x,y));
54 }
55 int main(){
56 scanf("%d",&n);
57 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
58 for(int i=1;i<=n;i++)update(1,1,n,i,a[i]);
59 f[0].s[0]=-1;
60 scanf("%d",&m);
61 for(int i=1;i<=m;i++){
62 scanf("%d%d",&p,&x);
63 if (p==1)update(1,1,n,x,a[x]^=1);
64 else{
65 scanf("%d",&y);
66 ll ans=(y-x+2LL)*(y-x+1)/2;
67 o=query(1,1,n,x,y);
68 for(int j=0;j<3;j++)ans-=o.a[0][1][j];
69 for(int j=0;j<2;j++)ans-=o.a[0][3][j];
70 printf("%lld\n",ans);
71 }
72 }
73 }
[bzoj5294]二进制的更多相关文章
- 【BZOJ5294】[BJOI2018]二进制(线段树)
[BZOJ5294][BJOI2018]二进制(线段树) 题面 BZOJ 洛谷 题解 二进制串在模\(3\)意义下,每一位代表的余数显然是\(121212\)这样子交替出现的. 其实换种方法看,就是\ ...
- 2019.02.12 bzoj5294: [Bjoi2018]二进制(线段树)
传送门 题意简述: 给出一个长度为nnn的二进制串. 你需要支持如下操作: 修改每个位置:1变0,0变1 询问对于一个区间的子二进制串有多少满足重排之后转回十进制值为333的倍数(允许前导000). ...
- BZOJ5294 BJOI2018二进制(线段树)
二进制数能被3整除相当于奇数.偶数位上1的个数模3同余.那么如果有偶数个1,一定存在重排方案使其合法:否则则要求至少有两个0且至少有3个1,这样可以给奇数位单独安排3个1. 考虑线段树维护区间内的一堆 ...
- 中国石油大学(华东)暑期集训--二进制(BZOJ5294)【线段树】
问题 C: 二进制 时间限制: 1 Sec 内存限制: 128 MB提交: 8 解决: 2[提交] [状态] [讨论版] [命题人:] 题目描述 pupil发现对于一个十进制数,无论怎么将其的数字 ...
- BZOJ5294 BJOI2018 二进制 线段树
传送门 因为每一位\(\mod 3\)的值为\(1,2,1,2,...\),也就相当于\(1,-1,1,-1,...\) 所以当某个区间的\(1\)的个数为偶数的时候,一定是可行的,只要把这若干个\( ...
- BZOJ5294 [BJOI2018] 二进制 【线段树】
BJOI的题目感觉有点难写 题目分析: 首先推一波结论.接下来的一切都在模3意义下 现在我们将二进制位重组,不难发现的是2^0≡1,2^1≡2,2^2≡1,2^3≡2....所以我们考虑这样的式子 2 ...
- Bzoj5294/洛谷P4428 [Bjoi2018]二进制(线段树)
题面 Bzoj 洛谷 题解 考虑一个什么样的区间满足重组之后可以变成\(3\)的倍数.不妨设\(tot\)为一个区间内\(1\)的个数.如果\(tot\)是个偶数,则这个区间一定是\(3\)的倍数,接 ...
- 使用struct处理二进制
有的时候需要用python处理二进制数据,比如,存取文件.socket操作时.这时候,可以使用python的struct模块来完成. struct模块中最重要的三个函数是pack(), unpack( ...
- 如何开启MySQL 5.7.12 的二进制日志
1. 打开/etc下的my.cnf文件 2. 编辑它,添加内容: log_bin=binary-log #二进制日志的文件名 server_id=1 #必须指定server_id,这是MySQL ...
随机推荐
- Mybatis、maven项目中整合log4j (17)
Mybatis.maven项目总整合log4j java 中Mybatis.maven项目总整合log4j 1.pom增加log4j包引用 2.添加 log4j.properties文件 # java ...
- UI自动化测试之Airtest
官方文档: https://airtest.doc.io.netease.com/ 本文我们讲解下Airtest的使用,主要学习目标有以下几点: (1)认识Airtest (2)了解Airtest能做 ...
- Flutter的环境配置以及一些常见问题
flutter & AndroidStudio flutter的下载与配置 flutter是Google推出的基于Dart语言开发的跨平台开源UI框架,能够支持安卓与iOS. flutter框 ...
- Allegro如何测量距离,测距工具的使用
http://www.allegro-skill.com/thread-2480-1-1.html
- 【linux】修改ip后hadoop只有四个节点的问题
学校的机房,每重启一次就会将虚拟机的某些配置还原到部署到学生机时候的状态(例如.etc/hosts文件中ip与主机名的映射),这个时候与我们前面所部署的hadoop就会产生IP不对应的状态,导致了ha ...
- JAVA笔记6__抽象类/接口/多态/instanceof关键字、父类设计法则
/** * 抽象类:很多具有相同特征和行为的类可以抽象为一个抽象类 * 1.抽象类可以没有抽象方法,有抽象方法的类必须是抽象类 * 2.非抽象类继承抽象类必须实现抽象方法[可以是空实现] * 3.抽象 ...
- linux 内核修炼之道——系统调用
1.问:什么是系统调用? 用户应用程序访问并使用内核所提供的各种服务的途径即是系统调用,也称系统调用接口层. 2.问:为什么需要系统调用? ① 系统调用作为内核和应用程序之间的中间层,扮演了一个桥梁角 ...
- Forest v1.5.12 发布,声明式 HTTP 框架,已超过 1.6k star
Forest介绍 Forest 是一个开源的 Java HTTP 客户端框架,它能够将 HTTP 的所有请求信息(包括 URL.Header 以及 Body 等信息)绑定到您自定义的 Interfac ...
- 记一次线上环境 ES 主分片为分配故障
故障前提 ElasticSearch 版本:5.2 集群节点数:5 索引主分片数:5 索引分片副本数:1 线上环境ES存储的数据量很大,当天由于存储故障,导致一时间 5个节点的 ES 集群,同时有两个 ...
- php swoft redis 发布和订阅
//订阅 public function subscribe() { /* @var \Swoft\Redis\Redis $redis */ $redis = App::getBean(\Swoft ...