首先可以发现$2^k$模3意义下有循环节,也就是1,-1,1,-1……
考虑对于x个1,y个0,判断是否存在3的倍数
1.x为偶数时一定可以,选择等量的1和-1即可
2.x为奇数,要满足$x\ge 3$且$y\ge 2$,这是可以用3个0*(-1)和3个1*1来抵消掉(如果y=2时也可以,因为此时总共有奇数位),同时$x-3$显然为偶数
看上去难以维护,考虑反过来,求不是3的倍数的区间个数,那么即要求$x=1$或x为奇数且$y=0/1$
线段树维护区间,对于每一个区间维护0的数量,1的数量和一个三维数组a[3][4][3]表示在任意/以左端点为开头/右端点为结尾的区间中,x为0/1/非0偶数/非1奇数,y为0/1/(>1)的数量,转移详见代码(比较丑陋)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 #define ll long long
8 struct ji{
9 int s[2];
10 ll a[3][4][3];
11 }o,f[N<<2];
12 int n,m,p,x,y,a[N];
13 int fx(int x){
14 if (x<2)return x;
15 return ((x&1)+2);
16 }
17 int fy(int y){
18 return min(y,2);
19 }
20 ji up(ji x,ji y){
21 if (x.s[0]<0)return y;
22 if (y.s[0]<0)return x;
23 for(int i=0;i<2;i++)o.s[i]=x.s[i]+y.s[i];
24 memset(o.a[0],0,sizeof(o.a[0]));
25 memcpy(o.a[1],x.a[1],sizeof(o.a[1]));
26 memcpy(o.a[2],y.a[2],sizeof(o.a[2]));
27 for(int i1=0;i1<4;i1++)
28 for(int j1=0;j1<3;j1++){
29 o.a[0][i1][j1]+=x.a[0][i1][j1]+y.a[0][i1][j1];
30 o.a[1][fx(i1+x.s[1])][fy(j1+x.s[0])]+=y.a[1][i1][j1];
31 o.a[2][fx(i1+y.s[1])][fy(j1+y.s[0])]+=x.a[2][i1][j1];
32 for(int i2=0;i2<4;i2++)
33 for(int j2=0;j2<3;j2++)
34 o.a[0][fx(i1+i2)][fy(j1+j2)]+=x.a[2][i1][j1]*y.a[1][i2][j2];
35 }
36 return o;
37 }
38 void update(int k,int l,int r,int x,int y){
39 if (l==r){
40 f[k].s[y]=1;
41 f[k].s[y^1]=0;
42 memset(f[k].a,0,sizeof(f[k].a));
43 for(int i=0;i<3;i++)f[k].a[i][y][y^1]=1;
44 return;
45 }
46 if (x<=mid)update(L,l,mid,x,y);
47 else update(R,mid+1,r,x,y);
48 f[k]=up(f[L],f[R]);
49 }
50 ji query(int k,int l,int r,int x,int y){
51 if ((l>y)||(x>r))return f[0];
52 if ((x<=l)&&(r<=y))return f[k];
53 return up(query(L,l,mid,x,y),query(R,mid+1,r,x,y));
54 }
55 int main(){
56 scanf("%d",&n);
57 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
58 for(int i=1;i<=n;i++)update(1,1,n,i,a[i]);
59 f[0].s[0]=-1;
60 scanf("%d",&m);
61 for(int i=1;i<=m;i++){
62 scanf("%d%d",&p,&x);
63 if (p==1)update(1,1,n,x,a[x]^=1);
64 else{
65 scanf("%d",&y);
66 ll ans=(y-x+2LL)*(y-x+1)/2;
67 o=query(1,1,n,x,y);
68 for(int j=0;j<3;j++)ans-=o.a[0][1][j];
69 for(int j=0;j<2;j++)ans-=o.a[0][3][j];
70 printf("%lld\n",ans);
71 }
72 }
73 }

[bzoj5294]二进制的更多相关文章

  1. 【BZOJ5294】[BJOI2018]二进制(线段树)

    [BZOJ5294][BJOI2018]二进制(线段树) 题面 BZOJ 洛谷 题解 二进制串在模\(3\)意义下,每一位代表的余数显然是\(121212\)这样子交替出现的. 其实换种方法看,就是\ ...

  2. 2019.02.12 bzoj5294: [Bjoi2018]二进制(线段树)

    传送门 题意简述: 给出一个长度为nnn的二进制串. 你需要支持如下操作: 修改每个位置:1变0,0变1 询问对于一个区间的子二进制串有多少满足重排之后转回十进制值为333的倍数(允许前导000). ...

  3. BZOJ5294 BJOI2018二进制(线段树)

    二进制数能被3整除相当于奇数.偶数位上1的个数模3同余.那么如果有偶数个1,一定存在重排方案使其合法:否则则要求至少有两个0且至少有3个1,这样可以给奇数位单独安排3个1. 考虑线段树维护区间内的一堆 ...

  4. 中国石油大学(华东)暑期集训--二进制(BZOJ5294)【线段树】

    问题 C: 二进制 时间限制: 1 Sec  内存限制: 128 MB提交: 8  解决: 2[提交] [状态] [讨论版] [命题人:] 题目描述 pupil发现对于一个十进制数,无论怎么将其的数字 ...

  5. BZOJ5294 BJOI2018 二进制 线段树

    传送门 因为每一位\(\mod 3\)的值为\(1,2,1,2,...\),也就相当于\(1,-1,1,-1,...\) 所以当某个区间的\(1\)的个数为偶数的时候,一定是可行的,只要把这若干个\( ...

  6. BZOJ5294 [BJOI2018] 二进制 【线段树】

    BJOI的题目感觉有点难写 题目分析: 首先推一波结论.接下来的一切都在模3意义下 现在我们将二进制位重组,不难发现的是2^0≡1,2^1≡2,2^2≡1,2^3≡2....所以我们考虑这样的式子 2 ...

  7. Bzoj5294/洛谷P4428 [Bjoi2018]二进制(线段树)

    题面 Bzoj 洛谷 题解 考虑一个什么样的区间满足重组之后可以变成\(3\)的倍数.不妨设\(tot\)为一个区间内\(1\)的个数.如果\(tot\)是个偶数,则这个区间一定是\(3\)的倍数,接 ...

  8. 使用struct处理二进制

    有的时候需要用python处理二进制数据,比如,存取文件.socket操作时.这时候,可以使用python的struct模块来完成. struct模块中最重要的三个函数是pack(), unpack( ...

  9. 如何开启MySQL 5.7.12 的二进制日志

    1. 打开/etc下的my.cnf文件 2. 编辑它,添加内容: log_bin=binary-log   #二进制日志的文件名 server_id=1  #必须指定server_id,这是MySQL ...

随机推荐

  1. Geostatistical Analyst Tools(Geostatistical Analyst 工具)

    Geostatistical Analyst 工具 1.使用地统计图层 # Process: GA 图层至格网 arcpy.GALayerToGrid_ga("", 输出表面栅格, ...

  2. 基于nginx实现私有yum仓库

    基于本地光盘的源 server端IP:10.0.0.79 nginx使用默认路径.端口 yum install nginx -y #更改以root运行 sed -i '/^user/s/nginx/r ...

  3. Mybatis 二级缓存应用 (21)

    [MyBatis 二级缓存] 概述:一级缓存作用域为同一个SqlSession对象,而二级缓存用来解决一级缓存不能夸会话共享,作用范围是namespace级,可以被多个SqlSession共享(只要是 ...

  4. 【c++ Prime 学习笔记】第2章 变量和基本类型

    2.1 基本内置类型 基本数据类型包含了算术类型(arithmetic type)和空类型(void) 算数类型,包含了字符.整型数.布尔值和浮点数 空类型,不对应具体的值 2.1.1 算术类型 算术 ...

  5. Java:ArrayList类小记

    Java:ArrayList类小记 对 Java 中的 ArrayList类,做一个微不足道的小小小小记 概述 java.util.ArrayList 是大小可变的数组的实现,存储在内的数据称为元素. ...

  6. VS2015+OpenCV+Qt

    VS2015+OpenCV+Qt 01.OpenCV 下载 进入官网链接: https://opencv.org,下载所需要的版本: 下载完成后直接双击,选择解压路径,解压到响应的文件夹中: 若之后需 ...

  7. UltraSoft - Beta - 设计与计划

    在DDL Killer的Alpha发布版本一周后,我们积累了一定的用户数量和用户反馈,同时也着手准备Beta阶段的继续开发,在正式开始迭代前,先对我们的Beta阶段的需求做一个统计和预估,一是保证工作 ...

  8. Scrum Meeting 0605

    零.说明 日期:2021-6-5 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 困难 qsy PM&前端 暂无 重新设 ...

  9. [对对子队]会议记录4.19(Scrum Meeting10)

    今天已完成的工作 何瑞 ​ 工作内容:搭建第2关,基本完成第3关 ​ 相关issue:搭建关卡2.3 ​ 相关签入:4.19签入1 4.19签入2 刘子航 ​ 工作内容:完成关卡选择界面的设计图 ​ ...

  10. Asp.net Core使用EFCore+Linq进行操作

    注:EFCore和EF有区别,在core中写的也有一点区别,每个人写法不同仅供参考写的比较细致耐性一点看完会有收获的 首先加上必要的引用 using Microsoft.EntityFramework ...