本文将同步发布于:

题目

题意简述

给定 \(y\),求 \(\varphi(x)=y\) 中 \(x\) 的个数和最大值。

\(1\leq y\leq 10^{12}\)。

题解

欧拉函数

解决这个问题,就必然要知道欧拉函数的计算式是什么。

显然,欧拉函数的计算式子为:

\[\varphi(x)=\prod_{p_i}(p_i-1)p_i^{c_i-1}
\]

我们不难想到,若 \((p_i-1)\mid y\),那么 \(x\) 可能含有 \(p_i\) 这个质因数,我们直接搜索即可。

复杂度证明

冷静分析,我们不难发现,最劣情况下,一个数 \(y\) 满足 \(x\) 含有 \(p_i\),则 \((p_i-1)p_i\mid y\),因此本质不同的质因子个数最多有 \(11\) 个,我们参考反素数的贪心分析,不难写出搜索程序找到最劣情况,发现搜索状态数不多(数量级在 \(10^6\))。

时间复杂度得到了保证。

拓展阅读

个数:A014197

最大值:A057635

参考程序

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll; bool st; inline ll max(reg ll a,reg ll b){
return a>b?a:b;
} const int S=1e6; bool vis[S+1];
int tot,prime[S+1]; inline void Init(reg int n){
for(reg int i=2;i<=n;++i){
if(!vis[i])
prime[++tot]=i;
for(reg int j=1;j<=tot&&i*prime[j]<=n;++j){
vis[i*prime[j]]=true;
if(!(i%prime[j]))
break;
}
}
return;
} inline bool isPrime(reg ll x){
if(x<=S)
return !vis[x];
else{
for(reg int i=1;i<=tot&&1ll*prime[i]*prime[i]<=x;++i)
if(!(x%prime[i]))
return false;
return true;
}
} int cnt;
ll Max;
vector<ll> V; inline void dfs(reg ll y,reg int p,reg ll pod){
if(y==1){
++cnt;
Max=max(Max,pod);
return;
}
if(y+1>V[p]&&isPrime(y+1))
++cnt,Max=max(Max,pod*(y+1));
for(reg int i=p+1,siz=V.size();i<siz&&1ll*(V[i]-1)*(V[i]-1)<=y;++i)
if(!(y%(V[i]-1))){
reg ll ny=y/(V[i]-1),npod=pod*V[i];
dfs(ny,i,npod);
while(!(ny%V[i]))
ny/=V[i],npod*=V[i],dfs(ny,i,npod);
}
return;
} bool ed; int main(void){
Init(S);
int t;
scanf("%d",&t);
while(t--){
ll y;
scanf("%lld",&y);
V.clear();
V.push_back(2);
for(reg int i=2;i<=tot;++i)
if(!(y%(prime[i]-1)))
V.push_back(prime[i]);
cnt=Max=0;
dfs(y,0,1),dfs(y,0,2);
reg ll bas=2;
while(!(y&1))
y>>=1,bas<<=1,dfs(y,0,bas);
printf("%d %lld\n",cnt,Max);
}
fprintf(stderr,"%.3lf s\n",1.0*clock()/CLOCKS_PER_SEC);
fprintf(stderr,"%.3lf MiB\n",(&ed-&st)/1048576.0);
return 0;
}

「题解」黑暗塔 wizard的更多相关文章

  1. 「SHOI2016」黑暗前的幻想乡 解题报告

    「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理, ...

  2. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  3. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  4. 「CH6202」黑暗城堡

    「CH6202」黑暗城堡 传送门 这道题是要让我们求以点 \(1\) 为源点的最短路树的方案数. 我们先跑一遍最短路,然后考虑类似 \(\text{Prim}\) 的过程. 当我们把点 \(x\) 加 ...

  5. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  6. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  7. 【LOJ】#2027. 「SHOI2016」黑暗前的幻想乡

    题解 我一开始写的最小表示法写的插头dp,愉快地TLE成60分 然后我觉得我就去看正解了! 发现是容斥 + 矩阵树定理 矩阵树定理对于有重边的图只要邻接矩阵的边数设置a[u][v]表示u,v之间有几条 ...

  8. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  9. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

随机推荐

  1. jdk8-stream-api

    1.stream简介 stream 是一个用来处理集合个数组的api jdk 8 引入strream的原因:1.去掉for循环,使编程变的更加简单(实际运行效率可能没有for循环高)2.paralle ...

  2. javaScript的成长之路【何为函数,面向对象又是啥!!!】

  3. C++入门教程之二:变量

    C++入门教程之二:变量 变量,顾名思义,意思是变化的量.变量的定义是计算机语言中能储存计算结果或能表示值的抽象概念.一个基本的程序需要变量,因此变量是程序设计中的一大重点. 变量基本结构 var_t ...

  4. Codeforces Round #692 (Div. 2, based on Technocup 2021 Elimination Round 3)

    A.In-game Chat 题目:就是从后面数连着的'('的个数是不是严格比剩下的字符多 思路:水题,直接从后往前遍历即可 代码: #include<iostream> #include ...

  5. 阿里云上安装 OpenStack 是什么体验

    阿里云上跑火车(安装 OpenStack Train 版本),猜猜最终花了多少钱? 前言 前面给大家提供了用虚拟机安装 OpenStack 的镜像,虽然已经很简便了,但还是略显笨重.一来镜像文件比较大 ...

  6. [bug] Maven每次都自动下载jar包非常慢

    解决 方法一:将maven改为离线模式,自己下载jar包复制到仓库中 eclipse中Window>preferences>maven>勾选Offline 方法二:将maven镜像改 ...

  7. [Python] Python工匠(Github)

    1.善用变量来改变代码质量 变量命名 变量要有描述性,不能太宽泛 BAD:day, host, cards, temp GOOD:day_of_week, hosts_to_reboot, expir ...

  8. KVM性能优化

    一.KVM为什么要调优 性能的损耗是关键.KVM采用全虚拟化技术,全虚拟化要由一个软件来模拟硬件,故有一定的损耗,特别是I/O,因此需要优化.KVM性能优化主要在CPU.内存.I/O这几方面.当然对于 ...

  9. 强哥CSS学习笔记

    html嵌套css样式:1.外部(推荐)2.内部3.内联(不推荐) css优先级1.内联2.id选择器3.class选择器4.标签 css长度单位:1.px2.em (14px) css选择器:常用选 ...

  10. Zabbix agent端 配置

    Zabbix agent端 配置 agent端环境 zabbix-client:RHEL8 IP:192.168.121.11 一.安装 Zabbix 源 [root@zabbix-client ~] ...