flink的watermark机制你学会了吗?
大家好,今天我们来聊一聊flink的Watermark机制。
这也是flink系列的的第一篇文章,如果对flink、大数据感兴趣的小伙伴,记得点个关注呀。
背景
flink作为先进的流水计算引擎,提供了三种时间概念,这对基于时间的流处理应用提供了多种可能。
Event time 指生产设备中每个独立的事件发生的时间,比如用户点击产生的时间。
Process time 指正在执行相关进程的机器的系统时间。
IngestionTime 指事件进入flink的时间。

WaterMark机制主要是用来解决EventTime乱序的情况。从事件的产生、到经过消息中间件、然后经过data source和Operator,在传输的过程中,由于网络传输等原因,会导致EventTime出现乱序,如果只是根据EventTime来决定window的运行,我们不能明确数据是否已经全部到位,所以我们需要有一个机制来保证特定的时间后,必须触发window去执行计算了,这个机制就是Watermark。
定义
WaterMark是一种特殊的时间戳,它会被插入到数据流中,用于表示EventTime小于Watermark的事件全部落入到了相应的窗口中。

如图所示,这是一个窗口大小为5的乱序流。w(5)表示EventTime小于5的数据已经落入相应的窗口。当Watermark大于等于窗口的最大时间戳(即窗口的endTime),就会触发相应窗口的计算。比如W(5)大于等于5,会触发窗口[0,5)的计算。
生成
WaterMark有两种生成方式,分别是Punctuated Watermark(标点水位线)和Periodic Watermark(周期性水位线)。
标点水位线
标点水位线(Punctuated Watermark)是通过数据流中某些特殊标记事件来触发新水位线的生成。这种方式下,窗口的触发与时间无关,而是决定于何时收到标记事件。在实际的生产中Punctuated方式在TPS很高的场景下会产生大量的Watermark在一定程度上对下游算子造成压力,所以只有在实时性要求非常高的场景才会选择Punctuated的方式进行Watermark的生成。
周期性水位线
周期性的(允许一定时间间隔或者达到一定的记录条数)产生一个Watermark。水位线提升的时间间隔是由用户设置的,在两次水位线提升时隔内会有一部分消息流入,用户可以根据这部分数据来计算出新的水位线。在实际的生产中Periodic的方式必须结合时间和积累条数两个维度继续周期性产生Watermark,否则在极端情况下会有很大的延时。
案例
在实际的项目中,主要是使用周期性的水位线,我们可以通过env.getConfig().setAutoWatermarkInterval()设置,默认是200ms。
public class test {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setAutoWatermarkInterval(100);
DataStreamSource<String> inputStream = env.socketTextStream("localhost", 8888);
SerializableTimestampAssigner<String> timestampAssigner =
new SerializableTimestampAssigner<String>(){
@Override
public long extractTimestamp(String element, long recordTimestamp) {
String[] fields = element.split(" ");
Long aLong = new Long(fields[0]);
return aLong * 1000L;
}
};
SingleOutputStreamOperator<Tuple2<String,Long>> result=inputStream.assignTimestampsAndWatermarks(
WatermarkStrategy
.<String>forBoundedOutOfOrderness(Duration.ofSeconds(5))
.withTimestampAssigner(timestampAssigner)
).map(new MapFunction<String, Tuple2<String,Long>>() {
@Override
public Tuple2<String, Long> map(String s) {
return Tuple2.of(s.split(" ")[1],1L);
}
}).keyBy(0)
.window(TumblingEventTimeWindows.of(Time.seconds(10)))
.reduce(new ReduceFunction<Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> reduce(Tuple2<String, Long> stringLongTuple2, Tuple2<String, Long> t1) throws Exception {
return new Tuple2<>(stringLongTuple2.f0,stringLongTuple2.f1+t1.f1);
}
});
result.print();
env.execute("warter mark test");
}
}
当通过nc -l 8888输入数据
1630312530 java
1630312533 java
1630312536 java
1630312540 java
1630312543 java
1630312538 java
1630312545 java
1630312539 java
1630312550 java
1630312549 java
1630312555 java
输出为:
1> (java,5)
1> (java,4)
当事件“1630312545 java”进入流处理后,生成的Watermark为“W(1630312540)”,大于等于窗口[1630312530,1630312540)的endTime,触发窗口的计算,此时延迟数据“1630312538 java”也会被计算在内,所以会输出“(java,5)”,而事件“1630312539 java”是在Watermark已经触发相应的窗口计算后,才进入流处理中,延迟太久,会被忽略掉。当事件“163031255 java”进入流处理后,生成的Wartermark为W(163031250),触发窗口[163031240,163031250)的计算。
最后
到此为止,我们已经把Watermark机制聊完了,如果喜欢,请点个关注吧。
更多有趣知识,请关注公众号【程序员学长】。我给你准备了上百本学习资料,包括python、java、数据结构和算法等。如果需要,请关注公众号【程序员学长】,回复【资料】,即可得。
你知道的越多,你的思维也就越开阔,我们下期再见。

flink的watermark机制你学会了吗?的更多相关文章
- [白话解析] Flink的Watermark机制
[白话解析] Flink的Watermark机制 0x00 摘要 对于Flink来说,Watermark是个很难绕过去的概念.本文将从整体的思路上来说,运用感性直觉的思考来帮大家梳理Watermark ...
- Flink的时间类型和watermark机制
一FlinkTime类型 有3类时间,分别是数据本身的产生时间.进入Flink系统的时间和被处理的时间,在Flink系统中的数据可以有三种时间属性: Event Time 是每条数据在其生产设备上发生 ...
- [源码解析] 从TimeoutException看Flink的心跳机制
[源码解析] 从TimeoutException看Flink的心跳机制 目录 [源码解析] 从TimeoutException看Flink的心跳机制 0x00 摘要 0x01 缘由 0x02 背景概念 ...
- Flink(八)【Flink的窗口机制】
目录 Flink的窗口机制 1.窗口概述 2.窗口分类 基于时间的窗口 滚动窗口(Tumbling Windows) 滑动窗口(Sliding Windows) 会话窗口(Session Window ...
- Flink Runtime核心机制剖析(转)
本文主要介绍 Flink Runtime 的作业执行的核心机制.本文将首先介绍 Flink Runtime 的整体架构以及 Job 的基本执行流程,然后介绍在这个过程,Flink 是怎么进行资源管理. ...
- Apache Flink - 数据流容错机制
Apache Flink提供了一种容错机制,可以持续恢复数据流应用程序的状态.该机制确保即使出现故障,程序的状态最终也会反映来自数据流的每条记录(只有一次). 从容错和消息处理的语义上(at leas ...
- Flink Window窗口机制
总览 Window 是flink处理无限流的核心,Windows将流拆分为有限大小的"桶",我们可以在其上应用计算. Flink 认为 Batch 是 Streaming 的一个特 ...
- [Flink] Flink的waterMark的通俗理解
导读 Flink 为实时计算提供了三种时间,即事件时间(event time).摄入时间(ingestion time)和处理时间(processing time). 遇到的问题: 假设在一个5秒的T ...
- Flink – process watermark
WindowOperator.processElement 主要的工作,将当前的element的value加到对应的window中, windowState.setCurrentNamespace(w ...
随机推荐
- 以初学者的角度理解:SQL实现关系除法
以初学者的角度理解:SQL实现关系除法 相信各位在学习SQL的时候,由于没有一家SQL语言提供除法命令而只能自己写一个.而网上大多就是四步骤加一个模板: select distinct A.X fro ...
- Centos7 firewall开放3306端口 笔记
1. 开启端口 // zone -- 作用域 // add-port=80/tcp -- 添加端口,格式为:端口/通讯协议 // permanent -- 永久生效,没有此参数重启后失效 firewa ...
- iOS 15 Beta升级卡死在更新进程,无法启动怎么办?
2021苹果全球开发者大会结束后,大批果粉迫不及待的尝试升级iOS 15测试版本,想第一时间体验新功能. 但是许多用户反馈升级一直卡死在"准备更新"."验证更新" ...
- P7003 [NEERC2013]Hack Protection
P7003 [NEERC2013]Hack Protection 题意 给定一个序列 \(a\) ,求有多少个区间满足区间内的数的异或和等于与的和的值. 思路 首先我们求一个异或前缀和 \(s\),对 ...
- P4169-CDQ分治/K-D tree(三维偏序)-天使玩偶
P4169-CDQ分治/K-D tree(三维偏序)-天使玩偶 这是一篇两种做法都有的题解 题外话 我写吐了-- 本着不看题解的原则,没写(不会)K-D tree,就写了个cdq分治的做法.下面是我的 ...
- 第十六篇 -- SuperIO学习
一.SuperIO 这次主要研究SuperIO读取以及控制风扇转速的问题. 参考文章:https://huchanghui123.github.io/Linux/Linux-Superio-CPU-F ...
- SpringCloud升级之路2020.0.x版-1.背景
本系列为之前系列的整理重启版,随着项目的发展以及项目中的使用,之前系列里面很多东西发生了变化,并且还有一些东西之前系列并没有提到,所以重启这个系列重新整理下,欢迎各位留言交流,谢谢!~ Spring ...
- linux命令打基础
目录 一.shell概述 二.linux命令分类 三.linux命令行 3.1 格式 3.2 编辑Linux命令行 四.Linux基础命令 4.1 pwd:查看当前的工作目录 4.2 cd:切换工作目 ...
- insert()与substr()函数
insert()函数与substr()函数 insert()函数: insert ( pos, str2);--将字符串str2插入到原字符串下标为pos的字符前 insert (pos, n, c) ...
- HCIA—(网络初相识)
网络 IT--> 信息服务 -->数据底层 云计算 大数据 CT--> 通信服务 -->通信服务 构建数据通信的协议 ICT-->信息通信 数据 + 通信 数通 基础 R ...