import numpy as np
import matplotlib.pyplot as plt
import math def create_data(w1=3,w2=-7,b=4,seed=1,size=30):
np.random.seed(seed)
w = np.array([w1,w2])
x1 = np.arange(0,size)
v = np.random.normal(loc=0,scale=5,size=size)
x2 = v - (b+w[0]*x1)/(w[1]*1.0)
y_train=[]
x_train = np.array(zip(x1,x2))
for item in v:
if item >=0:
y_train.append(1)
else:
y_train.append(-1)
y_train = np.array(y_train)
return x_train,y_train def SGD(x_train,y_train):
alpha=0.01
w,b=np.array([0,0]),0
c,i=0,0
while i<len(x_train):
if (x_train[i].dot(w)+b)*y_train[i] <=0:
c +=1
w=w+alpha*y_train[i]*x_train[i]
b=b+alpha*y_train[i]
print("count:%s index:%s w:%s:b:%s" %(c,i,w,b))
i=0
else:
i=i+1
return w,b def test_and_show(w1,w2,b,size,w_estimate,b_estimate,x_train,y_train):
fig = plt.figure()
ax1 = fig.add_subplot(111)
plt.xlabel('x1')
plt.ylabel('x2')
x1 = np.arange(0,size+1,size)
x2 = -(b+w1*x1)/(w2*1.0)
ax1.plot(x1,x2,c="black")
x2 = -(b_estimate+w_estimate[0]*x1)/w_estimate[1]*1.0
ax1.plot(x1,x2,c="red")
for i in range(0,len(x_train)):
if y_train[i]>0:
ax1.scatter(x_train[i,0],x_train[i,1],c="r",marker='o')
else:
ax1.scatter(x_train[i,0],x_train[i,1],c="b",marker="^")
plt.show() if __name__ == '__main__':
w1,w2,b=3,-7,4
size=50
x_train,y_train=create_data(w1,w2,b,1,size)
w_estimate,b_estimate=SGD(x_train,y_train)
test_and_show(w1,w2,b,size,w_estimate,b_estimate,x_train,y_train)

count:1 index:0 w:[0.         0.08693155]:b:0.01
count:2 index:9 w:[-0.09 0.05511436]:b:0.0
count:3 index:8 w:[-0.01 0.11106631]:b:0.01
count:4 index:9 w:[-0.1 0.07924912]:b:0.0
count:5 index:8 w:[-0.02 0.13520107]:b:0.01
count:6 index:9 w:[-0.11 0.10338388]:b:0.0
count:7 index:8 w:[-0.03 0.15933583]:b:0.01
count:8 index:9 w:[-0.12 0.12751864]:b:0.0
count:9 index:8 w:[-0.04 0.18347059]:b:0.01
count:10 index:9 w:[-0.13 0.1516534]:b:0.0
count:11 index:8 w:[-0.05 0.20760535]:b:0.01
count:12 index:9 w:[-0.14 0.17578815]:b:0.0
count:13 index:8 w:[-0.06 0.23174011]:b:0.01
count:14 index:9 w:[-0.15 0.19992291]:b:0.0
count:15 index:8 w:[-0.07 0.25587487]:b:0.01
count:16 index:9 w:[-0.16 0.22405767]:b:0.0
count:17 index:8 w:[-0.08 0.28000963]:b:0.01
count:18 index:9 w:[-0.17 0.24819243]:b:0.0
count:19 index:18 w:[0.01 0.33316026]:b:0.01
count:20 index:7 w:[-0.06 0.33550632]:b:0.0
count:21 index:9 w:[-0.15 0.30368913]:b:-0.01
count:22 index:18 w:[0.03 0.38865696]:b:0.0
count:23 index:7 w:[-0.04 0.39100302]:b:-0.01
count:24 index:9 w:[-0.13 0.35918582]:b:-0.02
count:25 index:16 w:[-0.29 0.29352152]:b:-0.03
count:26 index:8 w:[-0.21 0.34947347]:b:-0.02
count:27 index:18 w:[-0.03 0.4344413]:b:-0.01
count:28 index:9 w:[-0.12 0.40262411]:b:-0.02
count:29 index:9 w:[-0.21 0.37080691]:b:-0.03
count:30 index:18 w:[-0.03 0.45577474]:b:-0.02
count:31 index:9 w:[-0.12 0.42395755]:b:-0.03
count:32 index:9 w:[-0.21 0.39214035]:b:-0.04
count:33 index:18 w:[-0.03 0.47710818]:b:-0.03
count:34 index:9 w:[-0.12 0.44529098]:b:-0.04
count:35 index:9 w:[-0.21 0.41347379]:b:-0.05
count:36 index:18 w:[-0.03 0.49844162]:b:-0.04
count:37 index:9 w:[-0.12 0.46662442]:b:-0.05
count:38 index:9 w:[-0.21 0.43480723]:b:-0.06
count:39 index:18 w:[-0.03 0.51977506]:b:-0.05
count:40 index:9 w:[-0.12 0.48795786]:b:-0.06
count:41 index:9 w:[-0.21 0.45614067]:b:-0.07
count:42 index:44 w:[0.23 0.65296677]:b:-0.06
count:43 index:7 w:[0.16 0.65531283]:b:-0.07
count:44 index:7 w:[0.09 0.65765889]:b:-0.08
count:45 index:7 w:[0.02 0.66000495]:b:-0.09
count:46 index:9 w:[-0.07 0.62818775]:b:-0.1
count:47 index:9 w:[-0.16 0.59637056]:b:-0.11
count:48 index:9 w:[-0.25 0.56455336]:b:-0.12
count:49 index:44 w:[0.19 0.76137946]:b:-0.11
count:50 index:7 w:[0.12 0.76372552]:b:-0.12
count:51 index:7 w:[0.05 0.76607158]:b:-0.13
count:52 index:7 w:[-0.02 0.76841764]:b:-0.14
count:53 index:9 w:[-0.11 0.73660045]:b:-0.15
count:54 index:9 w:[-0.2 0.70478325]:b:-0.16
count:55 index:9 w:[-0.29 0.67296605]:b:-0.17
count:56 index:35 w:[-0.64 0.517885]:b:-0.18
count:57 index:8 w:[-0.56 0.57383695]:b:-0.17
count:58 index:8 w:[-0.48 0.62978891]:b:-0.16
count:59 index:8 w:[-0.4 0.68574086]:b:-0.15
count:60 index:18 w:[-0.22 0.77070869]:b:-0.14
count:61 index:9 w:[-0.31 0.7388915]:b:-0.15
count:62 index:35 w:[-0.66 0.58381044]:b:-0.16
count:63 index:8 w:[-0.58 0.6397624]:b:-0.15
count:64 index:8 w:[-0.5 0.69571435]:b:-0.14
count:65 index:8 w:[-0.42 0.75166631]:b:-0.13
count:66 index:18 w:[-0.24 0.83663414]:b:-0.12
count:67 index:9 w:[-0.33 0.80481694]:b:-0.13
count:68 index:26 w:[-0.59 0.6938186]:b:-0.14
count:69 index:8 w:[-0.51 0.74977055]:b:-0.13
count:70 index:8 w:[-0.43 0.8057225]:b:-0.12
count:71 index:18 w:[-0.25 0.89069034]:b:-0.11
count:72 index:9 w:[-0.34 0.85887314]:b:-0.12
count:73 index:16 w:[-0.5 0.79320884]:b:-0.13
count:74 index:18 w:[-0.32 0.87817667]:b:-0.12
count:75 index:16 w:[-0.48 0.81251236]:b:-0.13
count:76 index:18 w:[-0.3 0.89748019]:b:-0.12
count:77 index:9 w:[-0.39 0.865663]:b:-0.13
count:78 index:44 w:[0.05 1.0624891]:b:-0.12
count:79 index:9 w:[-0.04 1.0306719]:b:-0.13
count:80 index:9 w:[-0.13 0.99885471]:b:-0.14
count:81 index:9 w:[-0.22 0.96703751]:b:-0.15
count:82 index:9 w:[-0.31 0.93522032]:b:-0.16
count:83 index:9 w:[-0.4 0.90340312]:b:-0.17

神经网络 感知机 Perceptron python实现的更多相关文章

  1. 2. 感知机(Perceptron)基本形式和对偶形式实现

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  2. 吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用

    import numpy as np from matplotlib import pyplot as plt from sklearn import neighbors, datasets from ...

  3. 感知机(python实现)

    感知机(perceptron)是二分类的线性分类模型,输入为实例的特征向量,输出为实例的类别(取+1和-1).感知机对应于输入空间中将实例划分为两类的分离超平面.感知机旨在求出该超平面,为求得超平面导 ...

  4. BP神经网络原理及python实现

    [废话外传]:终于要讲神经网络了,这个让我踏进机器学习大门,让我读研,改变我人生命运的四个字!话说那么一天,我在乱点百度,看到了这样的内容: 看到这么高大上,这么牛逼的定义,怎么能不让我这个技术宅男心 ...

  5. 20151227感知机(perceptron)

    1 感知机 1.1 感知机定义 感知机是一个二分类的线性分类模型,其生成一个分离超平面将实例的特征向量,输出为+1,-1.导入基于误分类的损失函数,利用梯度下降法对损失函数极小化,从而求得此超平面,该 ...

  6. 感知机(perceptron)概念与实现

    感知机(perceptron) 模型: 简答的说由输入空间(特征空间)到输出空间的如下函数: \[f(x)=sign(w\cdot x+b)\] 称为感知机,其中,\(w\)和\(b\)表示的是感知机 ...

  7. 神经网络(BP)算法Python实现及简单应用

    首先用Python实现简单地神经网络算法: import numpy as np # 定义tanh函数 def tanh(x): return np.tanh(x) # tanh函数的导数 def t ...

  8. 深层神经网络框架的python实现

    概述 本文demo非常适合入门AI与深度学习的同学,从最基础的知识讲起,只要有一点点的高等数学.统计学.矩阵的相关知识,相信大家完全可以看明白.程序的编写不借助任何第三方的深度学习库,从最底层写起. ...

  9. 机器学习(4):BP神经网络原理及其python实现

    BP神经网络是深度学习的重要基础,它是深度学习的重要前行算法之一,因此理解BP神经网络原理以及实现技巧非常有必要.接下来,我们对原理和实现展开讨论. 1.原理  有空再慢慢补上,请先参考老外一篇不错的 ...

随机推荐

  1. HDU1213How Many Tables(基础并查集)

    HDU1213How Many Tables Problem Description Today is Ignatius' birthday. He invites a lot of friends. ...

  2. 记录不存在则插入,存在则更新 → MySQL 的实现方式有哪些?

    开心一刻 今天我爸.我.我女儿一起吃饭,我们每人一个鸡腿 女儿问道:爸爸,你吃鸡腿吗 我以为她要把她的鸡腿给我吃,倍感欣慰地说道:我不吃,宝贝 女儿一把抓起我的鸡腿放进了她爷爷的碗里,说道:不吃给爷爷 ...

  3. 解决下载的css样式文件在同一排的问题

    一.将样式文件里的所有内容复制到word里 Ctrl+F查找替换,将所有分号;替换成;^p 小提示:在word里^p表示回车 二.将央视文件里的所有反括号}进行替换替换成}^p然后将代码整个粘贴回样式 ...

  4. Orchard Core入门配方和主题

    包含Orchard Core入门配方和主题 可以通过两个不同的NuGet包使用Orchard Core. OrchardCore.Application.Cms.Core.Targets Orchar ...

  5. git 操作 :从远程仓库gitLab上拉取指定分支到本地仓库;git如何利用分支进行多人开发 ;多人合作代码提交实践

    例如:将gitLab 上的dev分支拉取到本地 git checkout -b dev origin/dev 在本地创建分支dev并切换到该分支 git pull origin dev 就可以把git ...

  6. PolarDB PostgreSQL DDL同步原理

    概述 在共享存储一写多读的架构下,数据文件实际上只有一份.得益于多版本机制,不同节点的读写实际上并不会冲突.但是有一些数据操作不具有多版本机制,其中比较有代表性的就是文件操作.多版本机制仅限于文件内的 ...

  7. P3706-[SDOI2017]硬币游戏【高斯消元,字符串hash】

    正题 题目链接:https://www.luogu.com.cn/problem/P3706 题目大意 给出 \(n\) 个长度为 \(m\) 的 \(H/T\) 串. 开始一个空序列,每次随机在后面 ...

  8. Dapr + .NET Core实战(七)Secrets

    什么是Secrets 应用程序通常会通过使用专用的存储来存储敏感信息,如连接字符串.密钥等. 通常这需要建立一个密钥存储,如Azure Key Vault.Hashicorp等,并在那里存储应用程序级 ...

  9. 使用VUE+原生PHP完成搜索后分页的效果

    html代码: <!doctype html> <html lang="en"> <head> <meta charset="U ...

  10. 深度学习--GAN学习笔记

    生成模型 WGAN Blog GAN 推荐学习网站 生成模型 什么是生成模型? GMM: 用来做聚类,(非监督学习) NB(朴素贝叶斯):(监督学习,可以用来做垃圾邮件分类) Logistics 回归 ...