又是一道神仙题,又是题解看不懂……

好时代,来临力……


时隔一个世纪来补题解了……

之前太垃圾了,脑子有点问题,所以没看懂题解。今天再看这道题虽然还是很毒瘤,但也没有想象得那么难。

先观察芯片的形状,肯定要三进制状压。所以表示一下状态:对于每一个格子 \((i,j)\),\(0\) 表示 \(i-1,i-2\) 行都可以放;\(1\) 表示 \(i-1\) 行可以放,\(i-2\) 行不行;\(2\) 表示 \(i-1\) 行不能放(\(i-2\) 行就不用管了)。

于是就可以由上一行的状态推出当前行的状态了:对于当前行的每一格,设上一行状态为 \(x\),如果 \(x=0\),则当前格状态为 \(0\);如果上一行为坏掉的点,当前状态为 \(2\);其他情况,当前状态为 \(x-1\)。

状态推出来之后用 dfs 算出当前的铺设情况。如果要以 \((x,y)\) 为左下角放芯片,则有如下转移(pre[]cur[]分别表示了上一行和当前行每一格的状态):

  • 纵向放芯片,需要满足pre[y]=0 && pre[y+1]=0 && cur[y]=0 && cur[y+1]=0
  • 横向放芯片,需要满足cur[y]=0 && cur[y+1]=0

满足条件后继续转移到下一个芯片,回溯时统计最大值。

可以预处理出 \(3\) 的幂次,设计好三进制与十进制互相转化的函数。

更多细节看代码吧。

#include <bits/stdc++.h>
using namespace std; const int N=155,M=15,p[]={1,3,9,27,81,243,729,2187,6561,19683,59049};
int n,m,k,f[2][60000],pre[M],cur[M];
bool v[N][M]; int TERtoDEC(int a[]) //ternary to decimal
{
int res=0;
for(int i=0;i<m;++i) res+=p[i]*a[i];
return res;
}
void DECtoTER(int x,int a[]) {for(int i=0;i<m;++i) a[i]=x%3,x/=3;} void dfs(int fl,int j,int last,int state)
{
f[fl][state]=max(f[fl][state],last);
if(j>=m) return;
if(j+1<m&&!pre[j]&&!pre[j+1]&&!cur[j]&&!cur[j+1])
{
cur[j]=cur[j+1]=2;
dfs(fl,j+2,last+1,TERtoDEC(cur));
cur[j]=cur[j+1]=0;
}
if(j+2<m&&!cur[j]&&!cur[j+1]&&!cur[j+2])
{
cur[j]=cur[j+1]=cur[j+2]=2;
dfs(fl,j+3,last+1,TERtoDEC(cur));
cur[j]=cur[j+1]=cur[j+2]=0;
}
dfs(fl,j+1,last,state);
} int main()
{
int T; scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
memset(v,0,sizeof(v));
for(int i=1,x,y;i<=k;++i)
scanf("%d%d",&x,&y),v[x][y-1]=1;
memset(f[0],-1,sizeof(f[0]));
for(int i=0;i<m;++i) pre[i]=v[1][i]?2:1;
int fl=0,tmp=TERtoDEC(pre);
f[fl][tmp]=0;
for(int i=2;i<=n;++i)
{
fl^=1; memset(f[fl],-1,sizeof(f[fl]));
for(int j=0;j<p[m];++j)
{
if(f[fl^1][j]==-1) continue;
DECtoTER(j,pre);
for(int k=0;k<m;++k)
if(v[i][k]) cur[k]=2;
else cur[k]=pre[k]?pre[k]-1:0;
tmp=TERtoDEC(cur);
dfs(fl,0,f[fl^1][j],tmp);
}
}
int ans=0;
for(int i=0;i<p[m];++i) ans=max(ans,f[fl][i]);
printf("%d\n",ans);
}
return 0;
}

[CEOI2002]Bugs Integrated, Inc. 题解的更多相关文章

  1. poj 1038 Bugs Integrated, Inc. 题解

    提供一种代码难度比较简单的做法(可能) 状态表示: 设置状态$ f[i][j] $,表示第 \(i\) 行状态为 \(j\) 的最大放置数,因为这是个阴间题,因为题目内存设置很小,所以要用滚动数组,存 ...

  2. POJ 1038 Bugs Integrated, Inc.(DFS + 三进制状压 + 滚动数组 思维)题解

    题意:n*m方格,有些格子有黑点,问你最多裁处几张2 * 3(3 * 2)的无黑点格子. 思路:我们放置2 * 3格子时可以把状态压缩到三进制: 关于状压:POJ-1038 Bugs Integrat ...

  3. POJ1038 Bugs Integrated, Inc.

    题目来源:http://poj.org/problem?id=1038 题目大意: 有一家芯片公司要在一块N*M的板子上嵌入芯片,其中1<=N<=150, 1<=M<=10,但 ...

  4. Bugs Integrated, Inc.

    Bugs Integrated, Inc. 给出一个\(n\times m\)的矩形网格图,给出其中K个障碍物的位置,求其中最多能摆的\(2\times 3\)的矩形的个数,\(n\leq 150,m ...

  5. 【CEOI2002】【Poj 1038】Bugs Integrated, Inc.

    http://poj.org/problem?id=1038 发一下中文题面(今天考试直接被改了): 生记茶餐厅由于受杀人事件的影响,生意日渐冷清,不得不暂时歇业.四喜赋闲在家,整天抱着零食看电视,在 ...

  6. POJ1038 - Bugs Integrated, Inc.(状态压缩DP)

    题目大意 要求你在N*M大小的主板上嵌入2*3大小的芯片,不能够在损坏的格子放置,问最多能够嵌入多少块芯片? 题解 妈蛋,这道题折腾了好久,黑书上的讲解看了好几遍才稍微有点眉目(智商捉急),接着看了网 ...

  7. POJ 1038 Bugs Integrated, Inc.

    AC通道 神坑的一道题,写了三遍. 两点半开始写的, 第一遍是直接维护两行的二进制.理论上是没问题的,看POJ discuss 上也有人实现了,但是我敲完后准备开始调了.然后就莫名其妙的以为会超时,就 ...

  8. POJ1038 Bugs Integrated, Inc 状压DP+优化

    (1) 最简单的4^10*N的枚举(理论上20%) (2) 优化优化200^3*N的枚举(理论上至少50%) (3) Dfs优化状压dp O(我不知道,反正过不了,需要再优化)(理论上80%) (4) ...

  9. poj1038 Bugs Integrated,Inc. (状压dp)

    题意:N*M的矩阵,矩阵中有一些坏格子,要在好格子里铺2*3或3*2的地砖,问最多能铺多少个. 我的方法好像和网上流传的方法不太一样...不管了.... 由数据范围很容易想到状压dp 我们设某个状态的 ...

随机推荐

  1. Docker-compose搭建ELK环境并同步MS SQL Server数据

    前言 本文作为学习记录,供大家参考:一次使用阿里云(Aliyun)1核2G centos7.5 云主机搭建Docker下的ELK环境,并导入MS SQL Server的商品数据以供Kibana展示的配 ...

  2. Java基础知识之this关键字知识讲解

    this关键字这里对java中this关键字的基础知识进行讲解,希望对热爱java的小伙伴有帮助!! /* this关键字代表了所属函数的调用者对象. this关键字的作用: 1. 如果存在同名成员变 ...

  3. go 技巧: 实现一个无限 buffer 的 channel

    前言 总所周知,go 里面只有两种 channel,一种是 unbuffered channel, 其声明方式为 ch := make(chan interface{}) 另一种是 buffered ...

  4. 2.docker下centos镜像

    1.下载并运行 # 交互模式下载并运行centos容器 $ docker run -it centos:latest /bin/bash 1.1 配置centos的环境别名 $ vi /etc/bas ...

  5. mturoute 最大传输单元路由检测Host

    mturoute检测mtu字符 下载地址:https://www.elifulkerson.com/projects/mturoute.php mturoute.exe                ...

  6. Room-数据持久化存储(入门)

    @ 目录 一.简单使用 1.Entity 2.Dao 3.DataBase 4.使用 二.参数解析 1.Entity 2.Dao 3.查询方式 总结 # 前言 官方简介: Room 持久性库在 SQL ...

  7. Devops 改变coding —— 安装个指定版本的 jenkins 发现和想象的不太一样?

    你好呀,我是小猿来也,一个刚开始折腾 Devops 的程序猿. 写在前面 前两天在池大那里看到了一段话,原话出自美团首席科学家夏华夏老师,具体内容我贴到了下面. 对于图片里的内容你们是怎么认为的呢?我 ...

  8. CosId 1.0.0 发布,通用、灵活、高性能的分布式 ID 生成器

    CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...

  9. Java并发编程中的锁

    synchronized 使用synchronized实现同步有2种方式: 同步方法(静态与非静态) 同步代码块 任何Java对象均可作为锁使用,其中,使用的锁对象有以下3种: 静态同步方法中,锁是当 ...

  10. Jenkins+SonarQube实现C#代码质量检查

    环境准备 SonarQube 项目创建 jenkins Windows构建节点配置 安装与SonarQube服务端相同版本jdk 安装sonar-scanner 并配置环境变量 安装Visual St ...