[CEOI2002]Bugs Integrated, Inc. 题解
又是一道神仙题,又是题解看不懂……
好时代,来临力……
时隔一个世纪来补题解了……
之前太垃圾了,脑子有点问题,所以没看懂题解。今天再看这道题虽然还是很毒瘤,但也没有想象得那么难。
先观察芯片的形状,肯定要三进制状压。所以表示一下状态:对于每一个格子 \((i,j)\),\(0\) 表示 \(i-1,i-2\) 行都可以放;\(1\) 表示 \(i-1\) 行可以放,\(i-2\) 行不行;\(2\) 表示 \(i-1\) 行不能放(\(i-2\) 行就不用管了)。
于是就可以由上一行的状态推出当前行的状态了:对于当前行的每一格,设上一行状态为 \(x\),如果 \(x=0\),则当前格状态为 \(0\);如果上一行为坏掉的点,当前状态为 \(2\);其他情况,当前状态为 \(x-1\)。
状态推出来之后用 dfs 算出当前的铺设情况。如果要以 \((x,y)\) 为左下角放芯片,则有如下转移(pre[]与cur[]分别表示了上一行和当前行每一格的状态):
- 纵向放芯片,需要满足
pre[y]=0 && pre[y+1]=0 && cur[y]=0 && cur[y+1]=0。 - 横向放芯片,需要满足
cur[y]=0 && cur[y+1]=0。
满足条件后继续转移到下一个芯片,回溯时统计最大值。
可以预处理出 \(3\) 的幂次,设计好三进制与十进制互相转化的函数。
更多细节看代码吧。
#include <bits/stdc++.h>
using namespace std;
const int N=155,M=15,p[]={1,3,9,27,81,243,729,2187,6561,19683,59049};
int n,m,k,f[2][60000],pre[M],cur[M];
bool v[N][M];
int TERtoDEC(int a[]) //ternary to decimal
{
int res=0;
for(int i=0;i<m;++i) res+=p[i]*a[i];
return res;
}
void DECtoTER(int x,int a[]) {for(int i=0;i<m;++i) a[i]=x%3,x/=3;}
void dfs(int fl,int j,int last,int state)
{
f[fl][state]=max(f[fl][state],last);
if(j>=m) return;
if(j+1<m&&!pre[j]&&!pre[j+1]&&!cur[j]&&!cur[j+1])
{
cur[j]=cur[j+1]=2;
dfs(fl,j+2,last+1,TERtoDEC(cur));
cur[j]=cur[j+1]=0;
}
if(j+2<m&&!cur[j]&&!cur[j+1]&&!cur[j+2])
{
cur[j]=cur[j+1]=cur[j+2]=2;
dfs(fl,j+3,last+1,TERtoDEC(cur));
cur[j]=cur[j+1]=cur[j+2]=0;
}
dfs(fl,j+1,last,state);
}
int main()
{
int T; scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
memset(v,0,sizeof(v));
for(int i=1,x,y;i<=k;++i)
scanf("%d%d",&x,&y),v[x][y-1]=1;
memset(f[0],-1,sizeof(f[0]));
for(int i=0;i<m;++i) pre[i]=v[1][i]?2:1;
int fl=0,tmp=TERtoDEC(pre);
f[fl][tmp]=0;
for(int i=2;i<=n;++i)
{
fl^=1; memset(f[fl],-1,sizeof(f[fl]));
for(int j=0;j<p[m];++j)
{
if(f[fl^1][j]==-1) continue;
DECtoTER(j,pre);
for(int k=0;k<m;++k)
if(v[i][k]) cur[k]=2;
else cur[k]=pre[k]?pre[k]-1:0;
tmp=TERtoDEC(cur);
dfs(fl,0,f[fl^1][j],tmp);
}
}
int ans=0;
for(int i=0;i<p[m];++i) ans=max(ans,f[fl][i]);
printf("%d\n",ans);
}
return 0;
}
[CEOI2002]Bugs Integrated, Inc. 题解的更多相关文章
- poj 1038 Bugs Integrated, Inc. 题解
提供一种代码难度比较简单的做法(可能) 状态表示: 设置状态$ f[i][j] $,表示第 \(i\) 行状态为 \(j\) 的最大放置数,因为这是个阴间题,因为题目内存设置很小,所以要用滚动数组,存 ...
- POJ 1038 Bugs Integrated, Inc.(DFS + 三进制状压 + 滚动数组 思维)题解
题意:n*m方格,有些格子有黑点,问你最多裁处几张2 * 3(3 * 2)的无黑点格子. 思路:我们放置2 * 3格子时可以把状态压缩到三进制: 关于状压:POJ-1038 Bugs Integrat ...
- POJ1038 Bugs Integrated, Inc.
题目来源:http://poj.org/problem?id=1038 题目大意: 有一家芯片公司要在一块N*M的板子上嵌入芯片,其中1<=N<=150, 1<=M<=10,但 ...
- Bugs Integrated, Inc.
Bugs Integrated, Inc. 给出一个\(n\times m\)的矩形网格图,给出其中K个障碍物的位置,求其中最多能摆的\(2\times 3\)的矩形的个数,\(n\leq 150,m ...
- 【CEOI2002】【Poj 1038】Bugs Integrated, Inc.
http://poj.org/problem?id=1038 发一下中文题面(今天考试直接被改了): 生记茶餐厅由于受杀人事件的影响,生意日渐冷清,不得不暂时歇业.四喜赋闲在家,整天抱着零食看电视,在 ...
- POJ1038 - Bugs Integrated, Inc.(状态压缩DP)
题目大意 要求你在N*M大小的主板上嵌入2*3大小的芯片,不能够在损坏的格子放置,问最多能够嵌入多少块芯片? 题解 妈蛋,这道题折腾了好久,黑书上的讲解看了好几遍才稍微有点眉目(智商捉急),接着看了网 ...
- POJ 1038 Bugs Integrated, Inc.
AC通道 神坑的一道题,写了三遍. 两点半开始写的, 第一遍是直接维护两行的二进制.理论上是没问题的,看POJ discuss 上也有人实现了,但是我敲完后准备开始调了.然后就莫名其妙的以为会超时,就 ...
- POJ1038 Bugs Integrated, Inc 状压DP+优化
(1) 最简单的4^10*N的枚举(理论上20%) (2) 优化优化200^3*N的枚举(理论上至少50%) (3) Dfs优化状压dp O(我不知道,反正过不了,需要再优化)(理论上80%) (4) ...
- poj1038 Bugs Integrated,Inc. (状压dp)
题意:N*M的矩阵,矩阵中有一些坏格子,要在好格子里铺2*3或3*2的地砖,问最多能铺多少个. 我的方法好像和网上流传的方法不太一样...不管了.... 由数据范围很容易想到状压dp 我们设某个状态的 ...
随机推荐
- python赋值,深拷贝和浅拷贝的区别
1.赋值 list1=[[1,2],'fei',66] list2=list1 list1 [[1, 2], 'fei', 66] list2 [[1, 2], 'fei', 66] list2.ap ...
- Open C
Open C UF 公共类型UF_ABORT 进度中断UF_ASSEMUF_ATTRUF_BOUNDUF_BREPUF_CAMUF_CFIUF_CGMUF_CLEARUF_CLONE ...
- centos7 安装卸载程序rpm使用方法
1.安装 rpm 包: ➢ 基本语法 rpm -ivh RPM 包全路径名称 2.卸载 rpm 包: ➢ 基本语法 rpm -e RPM 包的名称 ➢ 应用案例 删除 firefox 软件包 rpm ...
- TCP/IP协议 (图解+秒懂+史上最全)
文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...
- 10个有趣又能编译为JavaScript的语言,你用过哪些?
现代应用相比普通的网页有不同的要求.但是浏览器是一个有着一套(大部分)固定可用的技术的平台,JavaScript依然是web应用的核心语言:任何需要在浏览器上跑的应用都需要使用这种语言. 我们都知道J ...
- 深入了解Debug和Release的区别
原文地址:https://blog.csdn.net/sky___ice/article/details/8993885 一: Bin 目录用来存放编译的结果,bin是二进制binrary的英文缩写, ...
- python基本函数增删改排序,用range()求和
a=["blue","red","brack"] print(len(a))#列表长度 a.append("yellow" ...
- QT 之 ODBC连接人大金仓数据库
QT 之 使用 ODBC 驱动连接人大金仓数据库 获取数据库驱动和依赖动态库 此操作可在人大金仓官网下载与系统匹配的接口动态库,或者从架构数据库的源码中获取驱动和依赖动态库 分别为: 驱动动态库:kd ...
- Flannel和Calico网络插件对比
1.Kubernetes通信问题 1.容器间通信:即同一个Pod内多个容器间通信,通常使用loopback来实现. 2.Pod间通信:K8s要求,Pod和Pod之间通信必须使用Pod-IP 直接访问另 ...
- k8s1.20环境搭建部署(二进制版本)
1.前提知识 1.1 生产环境部署K8s集群的两种方式 kubeadm Kubeadm是一个K8s部署工具,提供kubeadm init和kubeadm join,用于快速部署Kubernetes集群 ...