基于雪花算法生成分布式ID(Java版)
SnowFlake算法原理介绍
在分布式系统中会将一个业务的系统部署到多台服务器上,用户随机访问其中一台,而之所以引入分布式系统就是为了让整个系统能够承载更大的访问量。诸如订单号这些我们需要它是全局唯一的,同时我们基本上都会将它作为查询条件;出于系统安全考虑不应当让其它人轻易的就猜出我们的订单号,同时也要防止公司的竞争对手直接通过订单号猜测出公司业务体量;为了保证系统的快速响应那么生成算法不能太耗时。而雪花算法正好解决了这些问题。
SnowFlake 算法(雪花算法), 是Twitter开源的分布式id生成算法。其核心思想就是: 使用一个64 bit的long型的数字作为全局唯一id。它的结构如下:

下面我们来对每一部分进一步的分析:
- 符号标识位(1位):计算机中为了区分负数(1)和正数(0),设计者将第一位做为符号位,ID通常使用正数,因此最高位固定为0;
- 41位时间截(毫秒),这个是使用 当前时间 减去 开始时间 得到的值;因此一旦我们的算法投入使用,那么程序中设置的开始时间就不能再去随意更改了,否则将可能出现重复的id值;
由于是基于时间来实现的且只有41位,由此可以计算出该算法只能使用70年左右:(2^41)/(1000*60*60*24*365) = 69.7 年; - 10位机器ID:共计1024个节点,通常将其分为2部分:机房ID(dataCenterId) 和 机器ID(workerId);
- 12 位序列号:毫秒内的计数,共计4098个;简单来说就是每毫秒内从0开始计算得到值;
最终SnowFlake算法总结如下:整体上按照时间自增排序,并且整个分布式系统内不会产生ID 碰撞(由机房ID和机器ID作区分),并且效率较高。最多支持1024台机器,每台机器每毫秒能够生成最多4096个ID,整个集群理论上每秒可以生成 1024 * 1000 * 4096 = 42 亿个ID。
这里不要觉得每毫秒4098个ID少了,我们计算一下每台机器理论上每秒可以支持 4096*1000 = 400万左右;要知道天猫双11那么大的订单量每秒也才50万笔;因此是完全够用的。
算法实现
我们在上面已经了解了SnowFlake的算法结构,下面是Java版本的实现。注意我们在实现该算法时,不一定要死死的按照上面的来实现,可以根据自身业务情况进行定制化;比如说机器ID,对于大部分的小项目来说根本不会分啥机房,因此我们完全可以根据服务器IP来弄;同时Twitter公布的算法中最终生成的id长度为15,但是还是根据自身业务情况进行调整。比如标准的算法只支持使用70年左右,但是我们可以通过扩展长度来增加年限。
public class SnowFlakeIdWorker {
/**
* 开始时间戳,单位毫秒;这里是2021-06-01
*/
private static final long TW_EPOCH = 1622476800000L;
/**
* 机器 ID 所占的位数
*/
private static final long WORKER_ID_BITS = 5L;
/**
* 数据标识 ID 所占的位数
*/
private static final long DATA_CENTER_ID_BITS = 5L;
/**
* 支持的最大机器ID,最大为31
*
* PS. Twitter的源码是 -1L ^ (-1L << workerIdBits);这里最后和-1进行异或运算,由于-1的二进制补码的特殊性,就相当于进行取反。
*/
private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);
/**
* 支持的最大机房ID,最大为31
*/
private static final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);
/**
* 序列在 ID 中占的位数
*/
private static final long SEQUENCE_BITS = 12L;
/**
* 机器 ID 向左移12位
*/
private static final long WORKER_ID_SHIFT = SEQUENCE_BITS;
/**
* 机房 ID 向左移17位
*/
private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;
/**
* 时间截向左移22位
*/
private static final long TIMESTAMP_LEFT_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;
/**
* 生成序列的掩码最大值,最大为4095
*/
private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);
/**
* 工作机器 ID(0~31)
*/
private final long workerId;
/**
* 机房 ID(0~31)
*/
private final long dataCenterId;
/**
* 毫秒内序列(0~4095)
*/
private long sequence = 0L;
/**
* 上次生成 ID 的时间戳
*/
private long lastTimestamp = -1L;
/**
* 创建 ID 生成器的方式一: 使用工作机器的序号(也就是将机房的去掉给机器ID使用),范围是 [0, 1023],优点是方便给机器编号
*
* @param workerId 工作机器 ID
*/
public SnowFlakeIdWorker(long workerId) {
// 计算最大值
long maxMachineId = (MAX_DATA_CENTER_ID + 1) * (MAX_WORKER_ID + 1) - 1;
if (workerId < 0 || workerId > maxMachineId) {
throw new IllegalArgumentException(String.format("Worker ID can't be greater than %d or less than 0", maxMachineId));
}
// 取高位部分作为机房ID部分
this.dataCenterId = (workerId >> WORKER_ID_BITS) & MAX_DATA_CENTER_ID;
// 取低位部分作为机器ID部分
this.workerId = workerId & MAX_WORKER_ID;
}
/**
* 创建 ID 生成器的方式二: 使用工作机器 ID 和机房 ID,优点是方便分机房管理
*
* @param dataCenterId 机房 ID (0~31)
* @param workerId 工作机器 ID (0~31)
*/
public SnowFlakeIdWorker(long dataCenterId, long workerId) {
if (workerId > MAX_WORKER_ID || workerId < 0) {
throw new IllegalArgumentException(String.format("Worker ID can't be greater than %d or less than 0", MAX_WORKER_ID));
}
if (dataCenterId > MAX_DATA_CENTER_ID || dataCenterId < 0) {
throw new IllegalArgumentException(String.format("DataCenter ID can't be greater than %d or less than 0", MAX_DATA_CENTER_ID));
}
this.workerId = workerId;
this.dataCenterId = dataCenterId;
}
/**
* 获得下一个 ID(该方法是线程安全的)
*
* @return 返回一个长度位15的 long类型的数字
*/
public synchronized long nextId() {
long timestamp = timeGen();
// 如果当前时间小于上一次 ID 生成的时间戳,说明发生时钟回拨,为保证ID不重复抛出异常。
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
if (lastTimestamp == timestamp) {
// 同一时间生成的,则序号+1
sequence = (sequence + 1) & SEQUENCE_MASK;
// 毫秒内序列溢出:超过最大值
if (sequence == 0) {
// 阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
} else {
// 时间戳改变,毫秒内序列重置
sequence = 0L;
}
// 上次生成 ID 的时间戳
lastTimestamp = timestamp;
// 移位并通过或运算拼到一起
return ((timestamp - TW_EPOCH) << TIMESTAMP_LEFT_SHIFT)
| (dataCenterId << DATA_CENTER_ID_SHIFT)
| (workerId << WORKER_ID_SHIFT)
| sequence;
}
private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
private long timeGen() {
return System.currentTimeMillis();
}
}
使用示例
// 初始化
SnowFlakeIdWorker idWorker = new SnowFlakeIdWorker(1, 0);
// 生成ID
for(int i=0; i<100; i++){
System.out.println(idWorker.nextId());
}
注意服务器不能发生时钟回拨,即系统时间发生错误,因为雪花算法是基于时间来生成,所有当发生时钟回拨后会导致出现重复ID的问题。

基于雪花算法生成分布式ID(Java版)的更多相关文章
- 雪花算法生成分布式ID
分布式主键ID生成方案 分布式主键ID的生成方案有以下几种: 数据库自增主键 缺点: 导入旧数据时,可能会ID重复,导致导入失败 分布式架构,多个Mysql实例可能会导致ID重复 UUID 缺点: 占 ...
- 雪花算法【分布式ID问题】【刘新宇】
分布式ID 1 方案选择 UUID UUID是通用唯一识别码(Universally Unique Identifier)的缩写,开放软件基金会(OSF)规范定义了包括网卡MAC地址.时间戳.名字空间 ...
- Orleans框架------基于Actor模型生成分布式Id
一.Actor简介 actor模型是一种并行计算的数学模型. 响应于收到的消息,演员可以:做出决定,创建更多Actor,发送更多消息,并确定如何响应接收到的下一条消息. 演员可以修改自己的状态,但只能 ...
- 基于雪花算法的增强版ID生成器
sequence 基于雪花算法的增强版ID生成器 解决了时间回拨的问题 无需手动指定workId, 微服务环境自适应 可配置化 快速开始 依赖引入 <dependency> <gro ...
- redis生成分布式id方案
分布式Id - redis方式 本篇分享内容是关于生成分布式Id的其中之一方案,除了redis方案之外还有如:数据库,雪花算法,mogodb(object_id也是数据库)等方案,对于redis来 ...
- 雪花算法(SnowFlake)Java实现
分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种. 算法原理 SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图: 1bit,不用,因为二 ...
- C# 根据twitter的snowflake算法生成唯一ID
C# 版算法: using System; using System.Collections.Generic; using System.Linq; using System.Text; using ...
- 根据twitter的snowflake算法生成唯一ID
C#版本 /// <summary> /// 根据twitter的snowflake算法生成唯一ID /// snowflake算法 64 位 /// 0---0000000000 000 ...
- 雪花算法生成ID
前言我们的数据库在设计时一般有两个ID,自增的id为主键,还有一个业务ID使用UUID生成.自增id在需要分表的情况下做为业务主键不太理想,所以我们增加了uuid作为业务ID,有了业务id仍然还存在自 ...
随机推荐
- 【原创】【基础】一文搞懂严蔚敏数据结构SqList &L和SqList L、ElemType &e和ElemType e
旁白 最近小渔夫在看严蔚敏.李冬梅<数据结构 c语言版>(第2版),学到第二章顺序表的实现时,看到函数参数一会是SqList &L.一会又是SqList L.一会ElemType ...
- k8s 使用nfs做provisioner
官方的nfs provisoner,serviceAccount RABC相关 请在这里下载https://raw.githubusercontent.com/kubernetes-incubator ...
- 这一篇文章帮你搞定Java(含Java全套资源)
当下想学习Java开发的人越来越多,对于很多零基础的人来说,没有相关的视频教程及相关的学习线路,学起来是一件很费劲的事情,还有很多人从网上及其它渠道购买视频,这些视频资料的价格对于刚毕业的大学生来说也 ...
- POJ1456贪心(set或者并查集区间合并)
题意: 给你n商品,每个商品有自己的价值还有保质期,一天最多只能卖出去一个商品,问最大收益是多少? 思路: 比较好想的贪心,思路是这样,每一次我们肯定拿价值最大的,至于在那天拿 ...
- canvas绘制虚线图表
最近有读者加我微信咨询这个问题,如下图所示: 要实现的效果如下: 其实难度不大,但是考虑一些人员对于canvas不熟悉,还是简单的介绍下. 其实该图表,就是一个圆圈外面在套一个圆弧的效果, 主要的难点 ...
- Day008 下标越界及小结
数组的四个基本特点 其长度是确定的.数组一旦被创建,它的大小就是不可以改变的. 其元素必须是相同类型,不允许出现混合类型. 数组中的元素可以是任何数据类型,包括基本类型和引用类型. 数组变量属于引用类 ...
- 全套AutoCAD版本安装教程及下载地址
1:AutoCAD 2004 安装教程及下载地址 https://mp.weixin.qq.com/s/4So2zmJ6nWu6Z3bSo3W19Q 2:AutoCAD 2005 安装教程及下载地址 ...
- 设计一个对象池(Anno.XObjectPool)
设计一个.net对象池 对象池对于创建开销比较大的对象来说很有意义,为了优化程序的运行速度.避免频繁创建销毁开销比较大的对象,我们可以通过对象池来复用创建开销大的对象.对象池的思路比较简单,事先创 ...
- SparkSQL电商用户画像(二)之如何构建画像
四. 如何构建电商用户画像 4.1 构建电商用户画像技术和流程 构建一个用户画像,包括数据源端数据收集.数据预处理.行为建模.构建用户画像 有些标签是可以直接获取到的,有些标签需要通过数据挖掘分析到! ...
- ImageIo.read 返回null
一.问题描述 今天收到一个bug就是imageio读取图片会返回null,具体如下 但是其他的图片就没有问题 二.问题分析 结合百度发现这张图片原本的后缀并非是jpg,使用notpard++打开就可以 ...