枚举携带的"A型守护精灵"数$A_{0}$,那么即只能经过$A_{i}\le A_{0}$的边,并最小化1到$n$路径上最大的$B_{i}$

将所有边按照$A_{i}$从小到大排序,那么前者即不断加入边,后者通过LCT维护$B_{i}$的最小生成树即可

具体的,将每一条边拆成一个点,向对应的两端点连边,加入一条边时查询对应环(若不产生环则直接加入)上$B_{i}$最大的边并替换即可

时间复杂度为$o(m\log m)$,可以通过

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 150005
4 struct Data{
5 int x,y,a,b;
6 bool operator < (const Data &k)const{
7 return a<k.a;
8 }
9 }e[N];
10 multiset<int>S;
11 int n,m,ans,st[N],fa[N],sz[N],rev[N],val[N],mx[N],ch[N][2];
12 int which(int k){
13 return ch[fa[k]][1]==k;
14 }
15 int check(int k){
16 return ch[fa[k]][which(k)]==k;
17 }
18 int get_max(int x,int y){
19 if (e[x].b>e[y].b)return x;
20 return y;
21 }
22 void upd(int k){
23 rev[k]^=1;
24 swap(ch[k][0],ch[k][1]);
25 }
26 void up(int k){
27 sz[k]=sz[ch[k][0]]+sz[ch[k][1]]+1;
28 mx[k]=get_max(get_max(mx[ch[k][0]],mx[ch[k][1]]),val[k]);
29 }
30 void down(int k){
31 if (rev[k]){
32 if (ch[k][0])upd(ch[k][0]);
33 if (ch[k][1])upd(ch[k][1]);
34 rev[k]=0;
35 }
36 }
37 void rotate(int k){
38 int f=fa[k],g=fa[f],p=which(k);
39 fa[k]=g;
40 if (check(f))ch[g][which(f)]=k;
41 fa[ch[k][p^1]]=f,ch[f][p]=ch[k][p^1];
42 fa[f]=k,ch[k][p^1]=f;
43 up(f),up(k);
44 }
45 void splay(int k){
46 for(int i=k;;i=fa[i]){
47 st[++st[0]]=i;
48 if (!check(i))break;
49 }
50 while (st[0])down(st[st[0]--]);
51 for(int i=fa[k];check(k);i=fa[k]){
52 if (check(i)){
53 if (which(i)==which(k))rotate(i);
54 else rotate(k);
55 }
56 rotate(k);
57 }
58 }
59 void access(int k){
60 int lst=0;
61 while (k){
62 splay(k);
63 ch[k][1]=lst,up(k);
64 lst=k,k=fa[k];
65 }
66 }
67 void make_root(int k){
68 access(k);
69 splay(k);
70 upd(k);
71 }
72 int find_root(int k){
73 access(k);
74 splay(k);
75 while (ch[k][0]){
76 down(k);
77 k=ch[k][0];
78 }
79 splay(k);
80 return k;
81 }
82 void add(int x,int y){
83 make_root(x);
84 make_root(y);
85 fa[y]=x;
86 }
87 void del(int x,int y){
88 make_root(x);
89 access(y);
90 splay(x);
91 fa[y]=ch[x][1]=0;
92 up(x);
93 }
94 int query(int x,int y){
95 make_root(x);
96 if (find_root(y)!=x)return -1;
97 return mx[x];
98 }
99 int main(){
100 scanf("%d%d",&n,&m);
101 for(int i=1;i<=m;i++)scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].a,&e[i].b);
102 sort(e+1,e+m+1);
103 for(int i=1;i<=m;i++)val[i+n]=mx[i+n]=i;
104 for(int i=1;i<=m;i++)add(e[i].x,i+n);
105 ans=1e9;
106 for(int i=1;i<=m;i++){
107 int s=query(e[i].y,i+n);
108 if (s!=i){
109 if (s>0)del(e[s].y,s+n);
110 add(e[i].y,i+n);
111 }
112 s=query(1,n);
113 if (s>0)ans=min(ans,e[i].a+e[s].b);
114 }
115 if (ans==1e9)ans=-1;
116 printf("%d\n",ans);
117 return 0;
118 }

[loj2245]魔法森林的更多相关文章

  1. loj2245 [NOI2014]魔法森林 LCT

    [NOI2014]魔法森林 链接 loj 思路 a排序,b做动态最小生成树. 把边拆成点就可以了. uoj98.也许lct复杂度写假了..越卡常,越慢 代码 #include <bits/std ...

  2. 【BZOJ3669】[Noi2014]魔法森林 LCT

    终于不是裸的LCT了...然而一开始一眼看上去这是kruskal..不对,题目要求1->n的路径上的每个点的两个最大权值和最小,这样便可以用LCT来维护一个最小生成路(瞎编的...),先以a为关 ...

  3. BZOJ 3669 【NOI2014】 魔法森林

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  4. BZOJ-3669 魔法森林 Link-Cut-Tree

    意识到背模版的重要性了,记住了原理和操作,然后手打模版残了..颓我时间...... 3669: [Noi2014]魔法森林 Time Limit: 30 Sec Memory Limit: 512 M ...

  5. 【BZOJ】3669: [Noi2014]魔法森林(lct+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3669 首先看到题目应该可以得到我们要最小化 min{ max{a(u, v)} + max{b(u, ...

  6. NOI2014 魔法森林

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 106  Solved: 62[Submit][Status] ...

  7. bzoj 3669: [Noi2014]魔法森林 动态树

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 363  Solved: 202[Submit][Status] ...

  8. 图论 BZOJ 3669 [Noi2014]魔法森林

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  9. BZOJ 3669: [Noi2014]魔法森林( LCT )

    排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...

随机推荐

  1. 在Windows Server 2012R2离线安装.net framework3.5

    最近新装了一台Windows Server 2012 R2的服务器,安装数据库时,出现了提示安装不上 .net framework3.5的情况,经过网络上多次的资料查找及反复试验终于找到了一个可以解决 ...

  2. 看动画学算法之:栈stack

    目录 简介 栈的构成 栈的实现 使用数组来实现栈 使用动态数组来实现栈 使用链表来实现 简介 栈应该是一种非常简单并且非常有用的数据结构了.栈的特点就是先进后出FILO或者后进先出LIFO. 实际上很 ...

  3. Java(9)数组详解

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15201564.html 博客主页:https://www.cnblogs.com/testero ...

  4. Kubernetes-Service介绍(三)-Ingress(含最新版安装踩坑实践)

    前言 本篇是Kubernetes第十篇,大家一定要把环境搭建起来,看是解决不了问题的,必须实战. Kubernetes系列文章: Kubernetes介绍 Kubernetes环境搭建 Kuberne ...

  5. WPF中的命令(Command)

    这节来讲一下WPF中的命令(Command)的使用. [认识Command] 我们之前说过,WPF本身就为我们提供了一个基础的MVVM框架,本节要讲的命令就是其中一环,通过在ViewModel中声明命 ...

  6. Redis:学习笔记-02

    Redis:学习笔记-02 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 4. 事物 Redis 事务本 ...

  7. Java:并发笔记-02

    Java:并发笔记-02 说明:这是看了 bilibili 上 黑马程序员 的课程 java并发编程 后做的笔记 3. 共享模型之管程-1 本章内容-1 共享问题 synchronized 线程安全分 ...

  8. oo第一次博客-三次表达式求导的总结与反思

    一.问题回顾与基本设计思路 三次作业依次是多项式表达式求导,多项式.三角函数混合求导,基于三角函数和多项式的嵌套表达式求导. 第一次作业想法很简单,根据指导书,我们可以发现表达式是由各个项与项之间的运 ...

  9. Prometheus之告警规则的编写

    Prometheus之告警规则的编写 一.前置知识 二.需求 三.实现步骤 1.编写告警规则 2.修改prometheus.yml执行告警规则的位置 3.配置文件截图 4.页面上看告警数据信息 5.查 ...

  10. Linux入门需要搞清楚的思路问题

    很多同学接触linux不多,对linux平台的开发更是一无所知. 而现在的趋势越来越表明,作为一个优秀的软件开发人员,或计算机it行业从业人员,="" 掌握linux是一种很重要的 ...