Atcoder Regular Contest 061 D - Card Game for Three(组合数学)
首先考虑合法的排列长什么样,我们考虑将每次操作者的编号记录下来形成一个序列(第一次 A 操作不计入序列),那么显然这个序列中必须恰好含有 \(n\) 个 A,且最后一个必须是 A。那么显然一个合法的取卡片方案唯一对应一个操作序列,而一个长度为 \(l\) 的操作序列恰好对应 \(3^{n+m+k-l}\) 个合法的取卡片方案(证明?就每次下一轮执行操作的人是谁就在对应的操作者所取的卡片上写啥,那么显然对于长度为 \(l\) 的操作序列而言,在原卡片堆中恰好有 \(l\) 张卡片上的数是确定下来的,另外 \(n+m+k-l\) 张可以 randomly 乱填,方案数就是 \(3^{n+m+k-l}\))
然后考虑怎样统计方案,我们枚举操作序列中 BC 出现次数 \(c\),那么操作序列长度即为 \(c+n\),其中有一个 A 的位置已经确定了,那么填好另外 \(n-1\) 个 A 的方案数即是 \(\dbinom{n+c-1}{n-1}\),如果我们能求出填好 B、C 的方案数 \(f_k\),就有 \(ans=\sum\limits_{c=0}^{m+k}\dbinom{n+c-1}{n-1}f_c·3^{m+k-c}\)。
接下来考虑怎样求 \(f_c\),首先列出柿子,枚举 B 的个数然后组合数统计答案,即
\]
上式也可以写作
\]
我们知道组合数下底数求和是无法直接求的,不过注意到组合数有个递推公式 \(\dbinom{n}{k}=\dbinom{n-1}{k}+\dbinom{n-1}{k-1}\),因此考虑从数列递推的角度理解这道题,即:
f_c&=\sum\limits_{c-k\le i\le m}\dbinom{c}{i}\\
&=\sum\limits_{c-k\le i\le m}\dbinom{c-1}{i}+\dbinom{c-1}{i-1}\\
&=\sum\limits_{c-k\le i\le m}\dbinom{c-1}{i}+\sum\limits_{c-k\le i\le m}\dbinom{c-1}{i-1}\\
&=\sum\limits_{c-k\le i\le m}\dbinom{c-1}{i}+\sum\limits_{c-k-1\le i\le m-1}\dbinom{c-1}{i}\\
&=2\sum\limits_{c-1-k\le i\le m}\dbinom{c-1}{i}-\dbinom{c-1}{m}-\dbinom{c-1}{c-k-1}\\
&=2f_{c-1}-\dbinom{c-1}{m}-\dbinom{c-1}{c-k-1}
\end{aligned}
\]
递推求一下即可,时间复杂度线性。
const int MAXN=9e5;
const int MOD=1e9+7;
int n,m,k,fac[MAXN+5],ifac[MAXN+5],f[MAXN+5],pw3[MAXN+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=pw3[0]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
for(int i=1;i<=n;i++) pw3[i]=3ll*pw3[i-1]%MOD;
}
int binom(int x,int y){
if(x<0||y<0||x<y) return 0;
return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;
}
int main(){
scanf("%d%d%d",&n,&m,&k);init_fac(n+m+k);
f[0]=1;for(int i=1;i<=m+k;i++)
f[i]=(2ll*f[i-1]-binom(i-1,m)-binom(i-1,i-k-1)+MOD*2ll)%MOD;
int ans=0;for(int i=0;i<=m+k;i++) ans=(ans+1ll*pw3[m+k-i]*binom(n-1+i,i)%MOD*f[i])%MOD;
printf("%d\n",ans);
return 0;
}
Atcoder Regular Contest 061 D - Card Game for Three(组合数学)的更多相关文章
- AtCoder Regular Contest 061
AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...
- AtCoder Regular Contest 061 DSnuke's Coloring
http://arc061.contest.atcoder.jp/tasks/arc061_b 题意: H行W列的矩阵中,然后挖了n个洞,输出j(0-9)行,对于第i行输出,有多少个3*3区域中有i个 ...
- [Atcoder Regular Contest 061] Tutorial
Link: ARC061 传送门 C: 暴力$dfs$就好了 #include <bits/stdc++.h> using namespace std; typedef long long ...
- AtCoder Regular Contest 061 E - すぬけ君の地下鉄旅行【最短路】
具体题解又要搬大哥的了,嘿嘿~ 请点击:G点我 这道题目的难点就是同一家公司的路直接走不需要再花费,然后多了一个公司这个东西,这个不像是边的副权值(瞎说的)之类的东西,这是对于路来说的,路的属性... ...
- Atcoder Regular Contest 096 C - Everything on It(组合数学)
Atcoder 题面传送门 & 洛谷题面传送门 简单题,由于这场 arc 的 F 是 jxd 作业而我不会做,所以只好来把这场的 E 水掉了. 我们记 \(f(i)\) 为钦定 \(i\) 个 ...
- AtCoder Regular Contest 094 (ARC094) CDE题解
原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...
- AtCoder Regular Contest 092
AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
- AtCoder Regular Contest 094
AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...
随机推荐
- Vue2源码解读 - 响应式原理及简单实现
直接进入主题了,想必大家都知道实现vue响应式核心方法就是 Object.defineProperty,那就从它开始说 Object.defineProperty 缺点: 深度监听,需要递归到底,一次 ...
- ubuntu20.04 使用root用户登录
1.设置root用户密码 执行 sudo passwd root 然后输入设置的密码,输入两次,这样就完成了设置root用户密码了 2.修改配置文件 执行 sudo vim /usr/share/li ...
- Beta阶段初始任务分配
项目 内容 这个作业属于哪个课程 2021春季软件工程(罗杰 任健) 这个作业的要求在哪里 团队项目-计划-Beta阶段说明书 一.Beta阶段总体规划 根据用户反馈与测试结果修复alpha版本的bu ...
- [对对子队]会议记录4.15(Scrum Meeting 6)
今天已完成的工作 何瑞 工作内容:制作了合成指南 相关issue:实现游戏内UI界面使用的组件 马嘉 工作内容:基本实现了箱子内物品列表 相关issue:实现游戏内UI界面使用的组件 ...
- BUAA 2020 软件工程 结对项目作业
Author: 17373051 郭骏 3.28添加:4.计算模块接口的设计与实现过程部分,PairCore实现的细节 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) ...
- mysql分表之后怎么平滑上线?
分表的目的 项目开发中,我们的数据库数据越来越大,随之而来的是单个表中数据太多.以至于查询数据变慢,而且由于表的锁机制导致应用操作也受到严重影响,出现了数据库性能瓶颈. 当出现这种情况时,我们可以考虑 ...
- 2021.5.24考试总结 [NOIP模拟3]
带着爆0的心态考的试,没想到整了个假rk2 (炸鱼大佬wtz忒强了OTZ T1 景区路线规划 这题对刚学完概率期望的我来说简直水爆了好吗.. 因为存在时间限制,不好跑高斯消元,就直接跑dp就完了. 令 ...
- 一文读懂Android进程及TCP动态心跳保活
一直以来,APP进程保活都是 各软件提供商 和 个人开发者 头疼的问题.毕竟一切的商业模式都建立在用户对APP的使用上,因此保证APP进程的唤醒,提升用户的使用时间,便是软件提供商和个人开发者的永恒追 ...
- stm32串口USART 硬件流控 --学习笔记
流控的概念源于 RS232 这个标准,在 RS232 标准里面包含了串口.流控的定义.大家一定了解,RS232 中的"RS"是Recommend Standard 的缩写,即&qu ...
- Python课程笔记(九)
本次课程主要学习了Excel和JSON格式的一些读写操作.课程代码 一.Excel数据读写操作 1.安装模块 pip install xlrd pip install xlwt 网不好可以采用三方库: ...