Codeforces 题目传送门 & 洛谷题目传送门

FWT 的 immortal tea %%%

首先我们可以写出一个朴素的 \(dp\),设 \(dp_{i,j}\) 表示考虑前 \(i\) 个三元组中取数异或和为 \(j\) 的方案数,那么显然有 \(dp_{i,j}=Xdp_{i-1,j\oplus a_i}+Ydp_{i-1,j\oplus b_i}+Zdp_{i-1,j\oplus c_i}\),这样暴力复杂度是 \(n2^k\) 的,无法通过。

考虑优化,不难发现这个 \(dp\) 是一个异或卷积的形式,下记 \(\times\) 为幂级数之间的异或卷积操作,考虑幂级数 \(f_i\) 为满足 \([x^{a_i}]f_i=X,[x^{b_i}]f_i=Y,[x^{c_i}]=Z\),其余各项系数均为 \(0\) 的幂级数,那么不难发现 \(dp_{i-1}\times f_i=dp_i\) 成立,但是如果硬要 FWT 优化,把所有幂级数都搞一遍 FWTxor 然后乘起来,复杂度会高达 \(nk2^k\),反而跑不过暴力。

那么我们这个想法有没有前途呢?不难发现我们这个幂级数很特殊,只有三项有值,其余项都是 \(0\),并且这三项的值还是对于所有幂级数都相同的 \(X,Y,Z\),考虑以此为突破口。记 \(\hat{A}\) 为幂级数 \(A\) 的 FWTxor,我们不妨来对于某个 \(i\in[1,n]\),\(\hat{f_i}\) 有什么性质,显然根据 FWTxor 的求法 \([x^j]\hat{f_i}=(-1)^{|j\cap a_i|}X+(-1)^{|j\cap b_i|}Y+(-1)^{|j\cap c_i|}Z\),也就是说 \(\hat{f_i}\) 的每一项总共有 \(2^3=8\) 种可能,这样分类讨论还是有点烦,这里有一个小小的减少分类讨论的技巧,考虑记 \(S=\operatorname{xor}\limits_{i=1}^na_i\),我们令 \(b_i\leftarrow b_i\oplus a_i,c_i\leftarrow c_i\oplus a_i,a_i\leftarrow 0\),不难发现经过这个转化之后,真正的 \(ans_i=ans_{i\oplus S}\),不过这样 \(X\) 前的系数 \((-1)^{|j\cap a_i|}\) 就恒为 \(1\) 了,这样就只有 \(4\) 种情况了,列一下分别是 \(X+Y+Z,X+Y-Z,X-Y+Z,X-Y-Z\),如果我们知道这四种情况分别出现的次数就可以快速幂求出 \(\widehat{f_1\times f_2\times\cdots\times f_n}\) 前的系数了,再 IFWTxor 一遍即可求出 \(ans\),具体来说我们记 \(p_j\) 为有多少个 \(i\) 满足 \([x^j]\hat{f_i}=X+Y+Z\),也类似地定义了 \(q_i\) 为 \(X+Y-Z\) 的个数,\(r_i\) 为 \(X-Y+Z\) 的个数,\(s_i\) 为 \(X-Y-Z\) 的个数,那么 \([x^j]\widehat{f_1\times f_2\times\cdots\times f_n}=(X+Y+Z)^{p_i}\times(X+Y-Z)^{q_i}\times(X-Y+Z)^{r_i}\times(X-Y-Z)^{s_i}\)。

于是现在问题就变为怎样求 \(p_j,q_j,r_j,s_j\),首先有一个显然的方程 \(p_j+q_j+r_j+s_j=n\),因为每个 \([x^j]\hat{f_i}\) 都是这四种情况之一,不过只有这一个方程是显然不够的,考虑记 \(t_j=\sum\limits_{i=1}^n(-1)^{|j\cap b_i|}\),那么显然 \(t_j=p_j+q_j-r_j-s_j\),因为每个 \(X+Y+Z,X+Y-Z\) 都会对其产生 \(+1\) 的贡献,而每个 \(X-Y+Z,X-Y-Z\) 都会对其产生 \(-1\) 的贡献,另一方面,如果我们记 \(c1_j\) 为 \(\sum\limits_{i=1}^n[j=b_i]\),那么 \(t_j=\sum\limits_{k}c1_k(-1)^{|j\cap k|}\),这应该很好理解,然后对 FWT 稍微敏感一些的同学就能发现,这不就 \(\hat{c1}\) 吗,故我们有了第二个方程 \(p_j+q_j-r_j-s_j=\hat{c1}_j\),类似地,如果我们记 \(c2_j\) 为 \(\sum\limits_{i=1}^n[j=c_i]\),\(c3_j\) 为 \(\sum\limits_{i=1}^n[j=b_i\oplus c_i]\),那么 \(p_j-q_j+r_j-s_j=\hat{c2}_j,p_j-q_j-r_j+s_j=\hat{c3}_j\),推导过程类似,这里就不再赘述了,因此我们有:

\[\begin{cases}
p_j+q_j+r_j+s_j=n\\
p_j+q_j-r_j-s_j=\hat{c1}_j\\
p_j-q_j+r_j-s_j=\hat{c2}_j\\
p_j-q_j-r_j+s_j=\hat{c3}_j
\end{cases}
\]

四个未知数四个方程,把它解出来即可,\(\hat{c1},\hat{c2},\hat{c3}\) 显然可以在 \(k2^k\) 的时间内求出,因此总复杂度 \(n+k2^k\),可以通过此题。

const int MAXN=1<<17;
const int MOD=998244353;
const int INV2=499122177;
int n,k,x,y,z,ans[MAXN+5],c1[MAXN+5],c2[MAXN+5],c3[MAXN+5];
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
void FWTxor(int *a,int len,int type){
for(int i=2;i<=len;i<<=1)
for(int j=0;j<len;j+=i)
for(int k=0;k<(i>>1);k++){
int X=a[j+k],Y=a[(i>>1)+j+k];
if(type==1) a[j+k]=X+Y,a[(i>>1)+j+k]=X-Y;
else a[j+k]=1ll*(X+Y)*INV2%MOD,a[(i>>1)+j+k]=1ll*(X-Y+MOD)*INV2%MOD;
}
}
int main(){
scanf("%d%d",&n,&k);int xsum=0;
scanf("%d%d%d",&x,&y,&z);
for(int i=1,a,b,c;i<=n;i++){
scanf("%d%d%d",&a,&b,&c);b^=a;c^=a;xsum^=a;
c1[b]++;c2[c]++;c3[b^c]++;
}
FWTxor(c1,1<<k,1);FWTxor(c2,1<<k,1);FWTxor(c3,1<<k,1);
for(int i=0;i<(1<<k);i++){
int w1=(n+c1[i]+c2[i]+c3[i])/4;
int w2=(n+c1[i]-c2[i]-c3[i])/4;
int w3=(n-c1[i]+c2[i]-c3[i])/4;
int w4=(n-c1[i]-c2[i]+c3[i])/4;
// printf("%d %d %d\n",c1[i],c2[i],c3[i]);
// printf("%d %d %d %d\n",w1,w2,w3,w4);
ans[i]=1ll*qpow((x+y)%MOD+z,w1)*qpow(x+y-z,w2)%MOD*
qpow(x-y+z,w3)%MOD*qpow(x-y-z,w4)%MOD;
if(ans[i]<0) ans[i]+=MOD;
} FWTxor(ans,1<<k,-1);
for(int i=0;i<(1<<k);i++) printf("%d ",ans[i^xsum]);
return 0;
}

Codeforces 1119H - Triple(FWT)的更多相关文章

  1. 【CF850E】Random Elections(FWT)

    [CF850E]Random Elections(FWT) 题面 洛谷 CF 题解 看懂题就是一眼题了... 显然三个人是等价的,所以只需要考虑一个人赢了另外两个人就好了. 那么在赢另外两个人的过程中 ...

  2. 【CF662C】Binary Table(FWT)

    [CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...

  3. 「WC2018」州区划分(FWT)

    「WC2018」州区划分(FWT) 我去弄了一个升级版的博客主题,比以前好看多了.感谢 @Wider 不过我有阅读模式的话不知为何 \(\text{LATEX}\) 不能用,所以我就把这个功能删掉了. ...

  4. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  5. 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)

    [UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...

  6. Codeforces663E Binary Table(FWT)

    题目 Source http://codeforces.com/contest/663/problem/E Description You are given a table consisting o ...

  7. CodeForces - 615D Multipliers(数论)

    http://codeforces.com/problemset/problem/615/D 题意 给出m个质因子,组成一个数n.问n的约数的乘积是多少,输出mod 1e+7的结果. 分析 从输入我们 ...

  8. 关于快速沃尔什变换(FWT)的一些个人理解

    定义 FWT是一种快速完成集合卷积运算的算法. 它可以用于求解类似 $C[i]=\sum\limits_{j⊗k=i}A[j]*B[k]$ 的问题. 其中⊗代表位运算中的|,&,^的其中一种. ...

  9. Codeforces Round #328(Div2)

    CodeForces 592A 题意:在8*8棋盘里,有黑白棋,F1选手(W棋往上-->最后至目标点:第1行)先走,F2选手(B棋往下-->最后至目标点:第8行)其次.棋子数不一定相等,F ...

随机推荐

  1. from athletelist import AthleteList出现红色下滑波浪线警告

    问题:from athletelist import AthleteList出现红色下滑波浪线警告 经过个人网上搜索了解,这个问题是因为python找不到相关的.py文件,无法导入athletelis ...

  2. javascript-jquery对象的css处理

    一.css基本属性处理 1.css()方法:获取css属性值.$("选择器").css(name);//获取匹配选择器的元素指定css属性值. 2.css()方法:设置css属性值 ...

  3. python解释器和Pycharm编辑器安装使用完整详细教程

    一.官网下载或软件管家公众号下载 二.安装Python解释器 1.选择自定义安装并添加到环境变量 2.检验Python是否安装成功 三.安装pycharm编辑器 1.点击安装,修改安装路径,建议安装C ...

  4. Beta实际开发与初始计划的比较

    零.说明 本篇博客为Beta阶段开始十天后,实际开发工作与初始计划的比较 截止至本篇博客发布为止,团队所有成员已完成计网考试,将在本周日进行充分的接口测试 一.比较 1.与初始计划对比 初始计划 实际 ...

  5. BUAA软件工程个人博客作业

    软件工程个人博客作业 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业 我在这个课程的目标 团队完成好的软件,并对自己作出规划 这个作 ...

  6. 微信小程序实现上拉和下拉加载更多

    在上一篇文章中,我们知道了使用 scroll-view 可以实现上拉加载更多,但是由于 scroll-view 的限制,它无法实现下拉加载更多,这篇文章我们使用 view 组件来实现 上拉和下拉加载更 ...

  7. Noip模拟71 2021.10.7

    T1 签到题 结论题,找到规律就会做 规律是每个点的度数$\mod$颜色种数,如果不是$0$则贡献一个答案 1 #include<bits/stdc++.h> 2 #define int ...

  8. 2021.6.17考试总结[NOIP模拟8]

    T1 星际旅行 其实就是求两条只走一遍的边的方案数. 考场上第一眼就感觉不可做,后来画了几个图,发现好像只要两个边是相连的就可以只走一遍,居然还真拿了30.. 其实是一道欧拉路的题,把每条非自环的边看 ...

  9. pyqgis环境配置

    配置pyqgis开发环境时,很多网上教程写的非常繁琐,这里仅仅找了一个最简单的配置方法,使用pycharm的IDE,安装QGIS软件后,在pycharm的ProjectInterpreter里面填写Q ...

  10. python +spatialite + window 解决方案(https://www.jianshu.com/p/5bc7d8b7b429)

    运行环境在windows 10 64bit.先将python安装完成.然后,到 spatilite官网 找到MS(即Microsoft)版本,下载64位的mod_spatialite,将其先解压到目标 ...