同一类框架,后出现的总会吸收之前框架的优点,然后加以改进,avro在序列化方面相对thrift就是一个很好的例子。借用Apache Avro 与 Thrift 比较 一文中的几张图来说明一下,avro在序列化方面的改进:

1、无需强制生成目标语言代码

avro提供了二种使用方式,一种称之为Sepcific方式,这跟thrift基本一致,都是写定义IDL文件,然后用编译器(或插件)生成目标class,另一种方式是Generic,这种方式下,不用生成目标代码,而是采用动态加载定义文件的方式,将 FieldName - FieldValue,以Map<K,V>的方式存储。

2、scheme/tag信息不重复写入二进制数据,存储及传输更高效

上图是thrift的存储格式,每块数据前都有一个tag用于标识数据域的类型及编号(这部分tag信息可以理解为数据域的meta信息),如果传输一个List集合,集合中的每条记录,这部分meta信息实际是重复存储的,多少有些浪费。

这是avro的改进,avro抛弃了对Filed编号的做法,而是直接在class的头部,把所有schema元数据信息包含在内(见下面的java代码),这样,client与server二端其实都已经知道数据的schema(架构模式)信息,仅仅在client与server通讯初始化,首次传输即可,以后无需再传递这部分信息,提升了网络传输效率。类似刚才的List集合这种情况,这部分信息也需要重复存储到2进制数据中,反序列化时,也不需再关注schema的信息,存储空间更小。

package yjmyzz.avro.study.dto;

@SuppressWarnings("all")
@org.apache.avro.specific.AvroGenerated
public class QueryParameter extends org.apache.avro.specific.SpecificRecordBase implements org.apache.avro.specific.SpecificRecord {
public static final org.apache.avro.Schema SCHEMA$ = new org.apache.avro.Schema.Parser().parse("{\"type\":\"record\",\"name\":\"QueryParameter\",\"namespace\":\"yjmyzz.avro.study.dto\",\"fields\":[{\"name\":\"ageStart\",\"type\":\"int\"},{\"name\":\"ageEnd\",\"type\":\"int\"}]}"); public static org.apache.avro.Schema getClassSchema() {
return SCHEMA$;
} //...
}

这是avro生成的java代码,从源代码可以印证Schema确实已经包含在java代码内。

关于avro的序列化,可以用下面的代码测试一下:

package yjmyzz.avro.test;

import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericDatumReader;
import org.apache.avro.generic.GenericDatumWriter;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.*;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.avro.specific.SpecificDatumWriter;
import org.junit.Assert;
import org.junit.Test;
import yjmyzz.avro.study.dto.QueryParameter;
import java.io.ByteArrayOutputStream;
import java.io.IOException; public class SerializeTest { @Test
public void test() throws IOException { QueryParameter queryParameter = getQueryParameter(); //****** 1 Specific 方式-序列化*******// ByteArrayOutputStream out1 = new ByteArrayOutputStream();
DatumWriter<QueryParameter> writer1 = new SpecificDatumWriter<QueryParameter>(QueryParameter.class);
BinaryEncoder encoder1 = EncoderFactory.get().binaryEncoder(out1, null);
writer1.write(queryParameter, encoder1);
encoder1.flush();
out1.close();
byte[] byte1 = out1.toByteArray();
System.out.println("Avro Specific二进制序列后的byte数组长度:" + byte1.length); //反序列化
DatumReader<QueryParameter> reader1 = new SpecificDatumReader<QueryParameter>(QueryParameter.class);
Decoder decoder1 = DecoderFactory.get().binaryDecoder(out1.toByteArray(), null);
QueryParameter result1 = reader1.read(null, decoder1);
Assert.assertEquals(queryParameter.getAgeStart(), result1.getAgeStart());
Assert.assertEquals(queryParameter.getAgeEnd(), result1.getAgeEnd()); //**我是万恶的分割线***// //****** 2 Genericy 方式-序列化*******//
Schema.Parser parser = new Schema.Parser();
//Schema schema = parser.parse(new File("/Users/jimmy/Work/Code/avro/avro-contract/src/main/avro/QueryParameter.avsc"));
Schema schema = parser.parse(getClass().getResourceAsStream("/QueryParameter.avsc")); //根据schema创建一个record示例(跟反射的思想有点类似)
GenericRecord datum = new GenericData.Record(schema);
datum.put("ageStart", 1);
datum.put("ageEnd", 5); //序列化
ByteArrayOutputStream out2 = new ByteArrayOutputStream();
DatumWriter<GenericRecord> writer2 = new GenericDatumWriter<GenericRecord>(schema);
Encoder encoder2 = EncoderFactory.get().binaryEncoder(out2, null);
writer2.write(datum, encoder2);
encoder2.flush();
out2.close();
byte[] byte2 = out2.toByteArray();
System.out.println("Avro Generic二进制序列后的byte数组长度:" + byte2.length); //反序列化
DatumReader<GenericRecord> reader2 = new GenericDatumReader<GenericRecord>(schema);
Decoder decoder2 = DecoderFactory.get().binaryDecoder(out2.toByteArray(), null);
GenericRecord result2 = reader2.read(null, decoder2);
Assert.assertEquals(datum.get("ageStart"), result2.get("ageStart"));
Assert.assertEquals(datum.get("ageEnd"), result2.get("ageEnd"));
} private QueryParameter getQueryParameter() {
QueryParameter query = new QueryParameter();
query.setAgeStart(1);
query.setAgeEnd(5);
return query;
}
}

Avro Specific二进制序列后的byte数组长度:2
Avro Generic二进制序列后的byte数组长度:2

前一篇thrift中的序列化结果相比,存储占用的空间比thrift的TCompactProtocol还要小,确实在序列化方面avro做得更好。

但是,凡事总有二面性,虽然avro在序列化方面做了不少改进,但是其RPC的实现并没有做出太多的创新,默认提供的HttpServer、NettyServer都是直接用的其它开源产品实现,不象Thrift自己提供了全新的实现,所以在RPC的性能方面,avro仍有很多可以优化的空间,默认情况下,从我自己测试的情况下,avro是不敌thrift的。但具体能优化到什么程度,就看使用的人在网络通讯、网络协议方面的功底了,有朋友说avro使用c#语言开发Server与Client端,对源代码优化后,可达到每秒20~30万的处理数。

rpc框架之 avro 学习 2 - 高效的序列化的更多相关文章

  1. rpc框架之avro 学习 1 - hello world

    avro是hadoop的一个子项目,提供的功能与thrift.Protocol Buffer类似,都支持二进制高效序列化,也自带RPC机制,但是avro使用起来更简单,无需象thrift那样生成目标语 ...

  2. rpc框架之gRPC 学习 - hello world

    grpc是google在github于2015年开源的一款RPC框架,虽然protobuf很早google就开源了,但是google一直没推出正式的开源框架,导致github上基于protobuf的r ...

  3. rpc框架: thrift/avro/protobuf 之maven插件生成java类

    thrift.avro.probobuf 这几个rpc框架的基本思想都差不多,先定义IDL文件,然后由各自的编译器(或maven插件)生成目标语言的源代码,但是,根据idl生成源代码这件事,如果每次都 ...

  4. rpc框架之 thrift 学习 1 - 安装 及 hello world

    thrift是一个facebook开源的高效RPC框架,其主要特点是跨语言及二进制高效传输(当然,除了二进制,也支持json等常用序列化机制),官网地址:http://thrift.apache.or ...

  5. rpc框架之 thrift 学习 2 - 基本概念

    thrift的基本构架: 上图源自:http://jnb.ociweb.com/jnb/jnbJun2009.html 底层Underlying I/O以上的部分,都是由thrift编译器生成的代码, ...

  6. 服务化实战之 dubbo、dubbox、motan、thrift、grpc等RPC框架比较及选型

    转自: http://blog.csdn.net/liubenlong007/article/details/54692241 概述 前段时间项目要做服务化,所以我比较了现在流行的几大RPC框架的优缺 ...

  7. dubbo、dubbox、motan、thrift、grpc等RPC框架比较及选型

    概述 前段时间项目要做服务化,所以我比较了现在流行的几大RPC框架的优缺点以及使用场景,最终结合本身项目的实际情况选择了使用dubbox作为rpc基础服务框架.下面就简单介绍一下RPC框架技术选型的过 ...

  8. 动手实现一个简单的 rpc 框架到入门 grpc (下)

    之前手动实现了一次简陋的 rpc 调用,为了简单使用了 json 编码信息,其实这是非常不可靠的,go 中 json 解析会有一些问题,比如整数会变成浮点数,而且 json 字符串比较占空间. gRP ...

  9. 一个入门rpc框架的学习

    一个入门rpc框架的学习 参考 huangyong-rpc 轻量级分布式RPC框架 该程序是一个短连接的rpc实现 简介 RPC,即 Remote Procedure Call(远程过程调用),说得通 ...

随机推荐

  1. Jquery实现的简单轮播效果

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. SharePoint 2013 入门教程之入门手册

    当我们搭建完环境,创建应用程序和网站集后,就已经正式开启了我们的SharePoint之旅了,进入网站以后,开始基本的使用.设置,了解SharePoint相关特性,下面,来简单了解下SharePoint ...

  3. [Infopath]使用jquery给infopath表单的的field赋值。 how to set value to Infopath field by Jquery

    客户有个需求,需要在infopath表单中嵌入一段我们自己的东西,计算后要更新infopath某一个field. 1. 怎么去获取到那个field 由于infopath生产的html非常的复杂,嵌套太 ...

  4. Sharepoint学习笔记—习题系列--70-576习题解析 -(Q116-Q120)

    Question  116 You are helping a corporate IT department create a SharePoint 2010 information archite ...

  5. list集合的排序Comparator和Collections.sort

    一个例子 package sortt; import java.util.ArrayList; import java.util.Collections; import java.util.Compa ...

  6. Mac系统下Android生成keystore

    首先打开终端(在搜索里面搜索Te即可出来) 然后输入  cd /Library/Java/Home/bin/ 然后这步很关键,由于我们用的是当前用户,所以没有最高权限,不能在Library文件夹下生成 ...

  7. 我的Android第五章:通过Intent实现活动与活动之间的交互

    Intent在活动的操作 作用: Itent是Android程序中各个组件直接交换的一个重要方式可以指定当前组件要执行任务同时也可以给各个组件直接进行数据交互              同时Inten ...

  8. iOS 学习 - 19 结构体

    //创建新类型typedef struct { int age; ];//最大字节为 20 }Student; Student value2 = {,*strcpy(value2.name, &quo ...

  9. swift实现饭否应用客户端源码

    swift 版 iOS 饭否客户端 源码下载:http://code.662p.com/view/13318.html 饭否是中国大陆地区第一家提供微博服务的网站,被称为中国版Twitter.用户可通 ...

  10. Python之Mac上搭建集成开发环境

    首先下载一个东西: 找到下载地址:https://download.jetbrains.8686c.com/python/pycharm-professional-2016.2.1.dmg pycha ...