bzoj#4423-[AMPPZ2013]Bytehattan【并查集】
正题
题目链接:https://darkbzoj.tk/problem/4423
题目大意
给出一个\(n*n\)的网格图,然后四联通的点之间连接。每次删掉一条边求这条边的两个点是否连通。强制在线。
\(1\leq n\leq 1500,1\leq m\leq 2n(n-1)\)
解题思路
转换成对偶图之后就可以变成加边判断连通性的问题了。
一个很简单的理解就是如果新的删去的边在对偶图构成了一个环那么就会被分成环内和环外了。
时间复杂度\(O(m\alpha(m))\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1600;
int n,k,fa[N*N];
int find(int x)
{return (fa[x]==x)?(x):(fa[x]=find(fa[x]));}
void Unionm(int x,int y){
x=find(x);y=find(y);
if(x==y)return;fa[x]=y;
}
int main()
{
scanf("%d%d",&n,&k);
bool last=1;
for(int i=1;i<=(n+1)*(n+1);i++)fa[i]=i;
for(int i=1;i<=n;i++){
Unionm(i,i+1);
Unionm((i-1)*(n+1)+1,i*(n+1)+1);
Unionm(n*(n+1)+i,n*(n+1)+i+1);
Unionm((i-1)*(n+1)+n+1,i*(n+1)+n+1);
}
for(int i=1;i<=k;i++){
int x1,x2,y1,y2,x,y,p,q;
char op1[2],op2[2],op;
scanf("%d%d%s",&x1,&y1,&op1);
scanf("%d%d%s",&x2,&y2,&op2);
if(last)x=x1,y=y1,op=op1[0];
else x=x2,y=y2,op=op2[0];
if(op=='N'){
p=x*(n+1)+y+1;
q=(x-1)*(n+1)+y+1;
p=find(p);q=find(q);
if(p!=q)last=1,puts("TAK");
else last=0,puts("NIE");
}
else{
p=x*(n+1)+y+1;
q=x*(n+1)+y;
p=find(p);q=find(q);
if(p!=q)last=1,puts("TAK");
else last=0,puts("NIE");
}
Unionm(p,q);
}
return 0;
}
bzoj#4423-[AMPPZ2013]Bytehattan【并查集】的更多相关文章
- BZOJ 4423: [AMPPZ2013]Bytehattan 并查集+平面图转对偶图
4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec Memory Limit: 128 MB Submit: 277 Solved: 183 [Submit ...
- bzoj 4423 [AMPPZ2013]Bytehattan(对偶图,并查集)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4423 [题意] 给定一个平面图,随时删边,并询问删边后两点是否连通.强制在线. [科普 ...
- BZOJ 4423: [AMPPZ2013]Bytehattan 平面图转对偶图 + 并查集
Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一 ...
- BZOJ 4423: [AMPPZ2013]Bytehattan
Sol 对偶图+并查集. 思路非常好,将网格图转化成对偶图,在原图中删掉一条边,相当于在对偶图中连上一条边(其实就是网格的格点相互连边),每次加边用并查集维护就可以了. 哦对,还要注意边界就是网格外面 ...
- 【BZOJ-4423】Bytehattan 并查集 + 平面图转对偶图
4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 144 Solved: 103[Submit][ ...
- BZOJ 3674 可持久化并查集加强版(路径压缩版本)
/* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...
- BZOJ 3674 可持久化并查集加强版(按秩合并版本)
/* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...
- bzoj 3674: 可持久化并查集加强版 (启发式合并+主席树)
Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了!ndsf:暴力就可以轻松虐!zky:…… ...
- BZOJ 3674 可持久化并查集加强版(主席树变形)
3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MB Submit: 2515 Solved: 1107 [Submit][Sta ...
- bzoj 4025 二分图 分治+并查集/LCT
bzoj 4025 二分图 [题目大意] 有n个点m条边,边会在start时刻出现在end时刻消失,求对于每一段时间,该图是不是一个二分图. 判断二分图的一个简单的方法:是否存在奇环 若存在奇环,就不 ...
随机推荐
- git 拉取代码指定分支
问题背景: 新项目还在开发阶段,没有正式对外发布,所以开发同事合并代码到develop上(或者其他名称分支上),而不是到master分支上 通过git拉取代码的时候,默认拉取的是master分支,如下 ...
- new Vue({ render: h => h(App), }).$mount('#app')
这里创建的vue实例没有el属性,而是在实例后面添加了一个$mount('#app')方法. $mount('#app') :手动挂载到id为app的dom中的意思 当Vue实例没有el属性时,则该实 ...
- ORB_SLAM2 Tracking流程
- MMM双主-双从读写分离部署
原文转自:https://www.cnblogs.com/itzgr/p/10233932.html作者:木二 目录 一 前期规划 1.1 主机规划 1.2 虚拟IP规划 1.3 用户列表 1.4 整 ...
- Install Percona XtraDb Cluster 5.6.20 on CentOS 6.5
http://blog.51cto.com/hj192837/1546149 You should have odd number of real nodes. node #1hostname: pe ...
- DNSPod DDNS 动态域名设置
所谓动态域名,就是当你的服务器 IP 地址发生变化的时候,自动地修改你在「域名解析服务商」那里的域名记录值 怎么操作?看官方文档 DNSPod用户API文档 首先需要创建 Token 完整的 API ...
- Salesforce LWC学习(三十六) Quick Action 支持选择 LWC了
本篇参考: https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.use_quick_act ...
- JDK1.8源码(八)——java.lang.ThreadLocal类
https://www.cnblogs.com/xdd666/p/14734047.html ThreadLocal https://www.cnblogs.com/yanfei1819/p/1473 ...
- centos7安装privoxy
本文分为三部分,第一部分是在阿里云的ECS上安装Privoxy,第二部分是在AWS的EC2上安装Privoxy,第三部分是Privoxy的配置. 第一部分:阿里云ECS安装Privoxy 配置yum源 ...
- noip模拟32
\(\color{white}{\mathbb{山高而青云冷,池深而蛟穴昏,行以慎步,援以轻身,名之以:落石}}\) 开题发现 \(t1\) 80分特别好写,于是先写了 但是这个做法没有任何扩展性,导 ...