层次聚类算法是机器学习中常用的一种无监督学习算法,它用于将数据分为多个类别或层次。
该方法在计算机科学、生物学、社会学等多个领域都有广泛应用。

层次聚类算法的历史可以追溯到上世纪60年代,当时它主要被用于社会科学中。
随着计算机技术的发展,这种方法在90年代得到了更为广泛的应用。

1. 算法概述

层次聚类的基本原理是创建一个层次的聚类,通过不断地合并或分裂已存在的聚类来实现。
它分为两种策略:

  1. 凝聚策略:初始时将每个点视为一个簇,然后逐渐合并相近的簇
  2. 分裂策略:开始时将所有点视为一个簇,然后逐渐分裂

scikit-learn中,层次聚类的策略有4种

  1. ward:默认策略,也就是最小方差法。它倾向于合并那些使得合并后的簇内部方差最小的两个簇
  2. complete:计算两个簇之间的距离时,考虑两个簇中距离最远的两个样本之间的距离
  3. average:计算两个簇之间的距离时,考虑两个簇中所有样本之间距离的平均值
  4. single:计算两个簇之间的距离时,考虑两个簇中距离最近的两个样本之间的距离

2. 创建样本数据

下面创建月牙形状数据来看看层次聚类的各个策略之间的比较。

from sklearn.datasets import make_moons
import matplotlib.pyplot as plt ax = plt.subplot() X, y = make_moons(noise=0.05, n_samples=1000)
ax.scatter(X[:, 0], X[:, 1], marker="o", c=y, s=25, cmap=plt.cm.prism) plt.show()


关于各种样本数据的生成,可以参考:TODO

3. 模型训练

用四种不同的策略来训练上面月牙形状的样本数据。

from sklearn.cluster import AgglomerativeClustering

# 定义
regs = [
AgglomerativeClustering(linkage="ward"),
AgglomerativeClustering(linkage="complete"),
AgglomerativeClustering(linkage="single"),
AgglomerativeClustering(linkage="average"),
] # 训练模型
for reg in regs:
reg.fit(X, y) fig, axes = plt.subplots(nrows=2, ncols=2)
fig.set_size_inches((10, 8)) # 绘制聚类之后的结果
axes[0][0].scatter(
X[:, 0], X[:, 1], marker="o", c=regs[0].labels_, s=25, cmap=plt.cm.prism
)
axes[0][0].set_title("ward 策略") axes[0][1].scatter(
X[:, 0], X[:, 1], marker="o", c=regs[1].labels_, s=25, cmap=plt.cm.prism
)
axes[0][1].set_title("complete 策略") axes[1][0].scatter(
X[:, 0], X[:, 1], marker="o", c=regs[2].labels_, s=25, cmap=plt.cm.prism
)
axes[1][0].set_title("single 策略") axes[1][1].scatter(
X[:, 0], X[:, 1], marker="o", c=regs[3].labels_, s=25, cmap=plt.cm.prism
)
axes[1][1].set_title("average 策略") plt.show()

从结果可以看出,single策略效果最好,它聚类的结果与原始数据的分类情况最为接近。
不过,这并不能说明single策略由于其它策略,只能说明single策略最适合上面的样本数据。

4. 总结

层次聚类在许多场景中都得到了应用,例如图像分割、文档聚类、生物信息学中的基因聚类等。
它特别适合那些需要多层次结构的应用。

层次聚类的最大优势在于它提供了一种层次结构的聚类,这对于许多应用来说是非常自然的,它能够展示数据在不同粒度下的聚类结果。

但它也存在一些缺点
首先,它的计算复杂度相对较高,特别是当数据量很大时;
其次,一旦做出合并或分裂的决策,就不能撤销,这可能导致错误的累积
此外,确定何时停止合并或分裂也是一个挑战。

【scikit-learn基础】--『监督学习』之 层次聚类的更多相关文章

  1. Python基础『一』

    内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: ...

  2. Python基础『二』

    目录 语句,表达式 赋值语句 打印语句 分支语句 循环语句 函数 函数的作用 函数的三要素 函数定义 DEF语句 RETURN语句 函数调用 作用域 闭包 递归函数 匿名函数 迭代 语句,表达式 赋值 ...

  3. 『cs231n』计算机视觉基础

    线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range ...

  4. 『计算机视觉』FPN:feature pyramid networks for object detection

    对用卷积神经网络进行目标检测方法的一种改进,通过提取多尺度的特征信息进行融合,进而提高目标检测的精度,特别是在小物体检测上的精度.FPN是ResNet或DenseNet等通用特征提取网络的附加组件,可 ...

  5. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  6. [原创] 【2014.12.02更新网盘链接】基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装

    [原创] [2014.12.02更新网盘链接]基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装 joinlidong 发表于 2014-11-29 14:25:50 ...

  7. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  8. 『TensorFlow』批处理类

    『教程』Batch Normalization 层介绍 基础知识 下面有莫凡的对于批处理的解释: fc_mean,fc_var = tf.nn.moments( Wx_plus_b, axes=[0] ...

  9. 『TensorFlow』梯度优化相关

    tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...

  10. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

随机推荐

  1. Ansible操作MySQL常用的几个模块

    1. mysql_user 模块 mysql_user模块用来添加,删除用户以及设置用户权限 创建MySQL数据库的用户与口令(非root@localhost用户),直接通过playbooks中的案例 ...

  2. 使用 Appilot 部署 Llama2,会聊天就行!

    Walrus 是一款基于平台工程理念的应用管理平台,致力于解决应用交付领域的深切痛点.借助 Walrus 将云原生的能力和最佳实践扩展到非容器化环境,并支持任意应用形态统一编排部署,降低使用基础设施的 ...

  3. 洛谷P2757 [国家集训队]等差子序列 (hash+线段树)

    题目连接 这题只要令 $len=3$看是否符合即可.因为是一个 $1$到 $n$的排列,考虑数列中项,那么对于一个数 $x$,令 $k=\max(n-x, x-1)$,只要存在 $d\in(1,k)$ ...

  4. ABAP 标准程序选择屏增强 文本显示异常问题处理 MB52 示例 INITIALIZATION. "变量参数:%_ + 屏幕选择字段变量 + _%_APP_%-TEXT %_SSKH_%_APP_%-TEXT = '所属客户'.

    数据筛选 文本 INITIALIZATION. "变量参数:%_ + 屏幕选择字段变量 + _%_APP_%-TEXT   %_SSKH_%_APP_%-TEXT = '所属客户'.

  5. Mongoose查增改删

    在src目录下新建一个文件夹models,用来存放数据模型和操作数据库的方法. 在models目录下新建一个文件user.js,用来管理用户信息相关的数据库操作. 相关的数据模型和数据库操作方法,最后 ...

  6. springMvc_控制台中文乱码问题

    Post方法解决控制台乱码 @Override protected Filter[] getServletFilters() { CharacterEncodingFilter filter = ne ...

  7. MySQL运维4-Mycat入门

    一.mycat概述 mycat是阿里巴巴企业下的开源的,基于JAVA语言编写的MySQL数据库中间件,可以像使用MySQL一样来使用Mycat,对于开发人员来说根本感觉不到mycat的存在.之前在国内 ...

  8. 量化交易的相对强弱(RSI )指标计算及策略

    顾名思义,相对强弱指数 (RSI) 指标告诉我们资产的相对强弱.换句话说,RSI 告诉我们股票相对于自身的表现(或不表现).RSI 被视为一种强大的技术指标,可用于分析市场,并且是交易者武器库的重要组 ...

  9. MySQL5.7允许远程root访问

    MySQL5.7允许远程root访问 登录你的服务器MySQL mysql -u root -p MySQLroot密码 GRANT ALL PRIVILEGES ON *.* TO 'root'@' ...

  10. ASR项目实战-决策点

    针对语音识别的产品,分别记录设计.开发过程中的决策点. 实时语音识别 对于实时语音识别来说,客户端和服务端之间实时交换语音数据和识别的结果. 客户端在启动识别时,即开始发送语音数据,期望在等待较短的时 ...