卷积神经网络-AlexNet
AlexNet
一些前置知识
top-1 和top-5错误率
top-1错误率指的是在最后的n哥预测结果中,只有预测概率最大对应的类别是正确答案才算预测正确。
top-5错误率指的是在最后的n个预测结果中,只要预测概率最大的前五个中含有正确答案就算预测正确。
max-pooling层
最大池化又叫做subsampling,其主要作用是减少图像的高度和长度而深度(宽度)则不会改变。下面是一个列子:
fully-connect层
在全连接层中,其每个神经元都与前一层的所有神经元相连接,每个连接都有一个权重用于调节信息传递的强度,并且每个神经元还有一个偏置项。
1000-way softmax
它其实也属于全连接层,这个层原本包含1000个未归一化的输出,而softmax将这个向量转换为概率分布。计算方式如下:
\]
non-saturating neurons
非饱和神经元是深度学习中一种设计神经元的理念,目的是避免神经元在训练过程中出现饱和现象。饱和现象会导致梯度消失,进而使得模型难以训练。下面是一些常见的非饱和激活函数:
- ReLU
- Leaky ReLU
- ELU
- SELU
dropout
在训练时以一定的概率将输入置0,输出时接受所有神经元的输出,但要乘以概率(1-p)。使得模型在每次前向和反向传播时都使用不同的子网络进行训练,从而提高模型的泛化能力。这种方法有效地减少了神经元之间的共适应性(co-adaptation),迫使网络的每个神经元在更具鲁棒性的特征上进行学习。
缺点:收敛速度可能变慢。
网络结构
由于这篇文章在提出时没有很好的GPU,估计显存不够?所有采用了双GPU训练的方法。具体来说上下两块GPU分别负责一般的参数,但是这其中也有信息的融合,比如第3、6,7层。其次这里输出的图像维度应该有误,应更正为2252253
算法实现
import torch.nn as nn
import torch
class AlexNet(nn.Module):
def __init__(self, num_classes=1000, init_weights=False):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2), # input[3, 224, 224] output[48, 55, 55]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[48, 27, 27]
nn.Conv2d(48, 128, kernel_size=5, padding=2), # output[128, 27, 27]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 13, 13]
nn.Conv2d(128, 192, kernel_size=3, padding=1), # output[192, 13, 13]
nn.ReLU(inplace=True),
nn.Conv2d(192, 192, kernel_size=3, padding=1), # output[192, 13, 13]
nn.ReLU(inplace=True),
nn.Conv2d(192, 128, kernel_size=3, padding=1), # output[128, 13, 13]
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 6, 6]
)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
nn.Linear(128 * 6 * 6, 2048),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(2048, 2048),
nn.ReLU(inplace=True),
nn.Linear(2048, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
卷积神经网络-AlexNet的更多相关文章
- TensorFlow技术解析与实战学习笔记(13)------Mnist识别和卷积神经网络AlexNet
一.AlexNet:共8层:5个卷积层(卷积+池化).3个全连接层,输出到softmax层,产生分类. 论文中lrn层推荐的参数:depth_radius = 4,bias = 1.0 , alpha ...
- 经典卷积神经网络——AlexNet
一.网络结构 AlexNet由5层卷积层和3层全连接层组成. 论文中是把网络放在两个GPU上进行,为了方便我们仅考虑一个GPU的情况. 上图中的输入是224×224224×224,不过经过计算(224 ...
- TensorFlow实战之实现AlexNet经典卷积神经网络
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet ...
- 经典卷积神经网络(LeNet、AlexNet、VGG、GoogleNet、ResNet)的实现(MXNet版本)
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷 ...
- 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32 ...
- 卷积神经网络的一些经典网络(Lenet,AlexNet,VGG16,ResNet)
LeNet – 5网络 网络结构为: 输入图像是:32x32x1的灰度图像 卷积核:5x5,stride=1 得到Conv1:28x28x6 池化层:2x2,stride=2 (池化之后再经过激活函数 ...
- 卷积神经网络之AlexNet
由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注. 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷 ...
- 第十六节,卷积神经网络之AlexNet网络实现(六)
上一节内容已经详细介绍了AlexNet的网络结构.这节主要通过Tensorflow来实现AlexNet. 这里做测试我们使用的是CIFAR-10数据集介绍数据集,关于该数据集的具体信息可以通过以下链接 ...
- 第十五节,卷积神经网络之AlexNet网络详解(五)
原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4 ...
- 第十三节,卷积神经网络之经典网络LeNet-5、AlexNet、VGG-16、ResNet(三)(后面附有一些网络英文翻译文章链接)
一 实例探索 上一节我们介绍了卷积神经网络的基本构建,比如卷积层.池化层以及全连接层这些组件.事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络.最直 ...
随机推荐
- [FE] 关于网页的一些反爬手段的解析思路,比如 58 等
这里主要是贴一些资料,有兴趣的可以再深入研究,比如做一些自动化库. www.cnblogs.com/TRHX/p/11740616.html blog.csdn.net/DzzzzzZzzzz/art ...
- 基于FPGA的二进制转BCD
BCD码(nary-Coded Decimal)又称二-十进制代码,亦称二进码十进数.是一种二进制的数字编码形式,用二进制编码的十进制代码.这种编码形式利用了四个位元来储存一个十进制的数码. 在数字 ...
- 使用Binlog日志恢复误删的MySQL数据实战
前言 "删库跑路"是程序员经常谈起的话题,今天,我就要教大家如何删!库!跑!路! 开个玩笑,今天文章的主题是如何使用Mysql内置的Binlog日志对误删的数据进行恢复,读完本文, ...
- CRAPS赌博小游戏
游戏规则 代码实现 首先把这个规则用代码写出来 再在它基础上进行简单的可视化(主要是利用Easygui的界面) 最后查缺补漏,看看有没有什么Bug 利用pyinstaller -F -w -i xx. ...
- Headless BI
Headless的概念最初的来源与内容管理平台有关,一般是指内容管理平台中的一些应用不提供可视化界面,只是通过API方式把内容以数据的方式给前端.前端根据不同的设备类型,可以再去进行针对性地渲染和展现 ...
- 07 mapping索引操作
目录 版本 获取健康值 获取所有索引的信息 创建索引 1. 自动推导 2. 自定义 判断索引是否存在 新增字段 新增记录 查询记录 获取mapping信息 删除索引 添加别名 查看别名 索引备份数据 ...
- 零知识证明: Tornado Cash 项目学习
前言 最近在了解零知识证明方面的内容,这方面的内容确实不好入门也不好掌握,在了解了一些基础的概念以后,决定选择一个应用了零知识证明的项目来进行进一步的学习.最终选择了 Tornado Cash 这个项 ...
- 更新package.json里所有模块
安装该插件 cnpm install -g npm-check-updates 或者 npm install -g npm-check-updates 在有package.json的目录执行 npm- ...
- .NET周刊【5月第2期 2024-05-12】
国内文章 C#在工业数字孪生中的开发路线实践 https://mp.weixin.qq.com/s/b_Pjt2oii0Xa_sZp_9wYWg 这篇文章探讨了C#在工业数字孪生技术中的应用,介绍了三 ...
- Pageoffice6 实现后台生成单个PDF文档
在实际项目中经常遇到这样的场景,客户希望后台动态生成PDF文档,目前网上有一些针对此需求的方案,如果您想要了解这些方案的对比,请查看后台生成单个Word文档中的"方案对比". Pa ...