题目链接

题目

题目描述

Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place.

Each cow lives in one of N (1 <= N <= 100,000) different barns (conveniently numbered 1..N) which are connected by N-1 roads in such a way that it is possible to get from any barn to any other barn via the roads. Road i connects barns \(A_i\) and \(B_i\) (1 <= \(A_i\) <= N; 1 <= \(B_i\) <= N) and has length \(L_i\) (1 <= \(L_i\) <= 1,000). The Great Cow Gathering can be held at any one of these N barns. Moreover, barn i has \(C_i\) (0 <= \(C_i\) <= 1,000) cows living in it.

When choosing the barn in which to hold the Cow Gathering, Bessie wishes to maximize the convenience (which is to say minimize the inconvenience) of the chosen location. The inconvenience of choosing barn X for the gathering is the sum of the distances all of the cows need to travel to reach barn X (i.e., if the distance from barn i to barn X is 20, then the travel distance is \(C_i*20\)). Help Bessie choose the most convenient location for the Great Cow Gathering.

Consider a country with five barns with [various capacities] connected by various roads of varying lengths. In this set of barns, neither barn 3 nor barn 4 houses any cows.
1 3 4 5
@--1--@--3--@--3--@[2]
[1] |
2
|
@[1]
2
Bessie can hold the Gathering in any of five barns; here is the table of inconveniences calculated for each possible location: Gather ----- Inconvenience ------
Location B1 B2 B3 B4 B5 Total
1 0 3 0 0 14 17
2 3 0 0 0 16 19
3 1 2 0 0 12 15
4 4 5 0 0 6 15
5 7 8 0 0 0 15
If Bessie holds the gathering in barn 1, then the inconveniences from each barn are:
Barn 1 0 -- no travel time there!
Barn 2 3 -- total travel distance is 2+1=3 x 1 cow = 3
Barn 3 0 -- no cows there!
Barn 4 0 -- no cows there!
Barn 5 14 -- total travel distance is 3+3+1=7 x 2 cows = 14
So the total inconvenience is 17.
The best possible convenience is 15, achievable at by holding the
Gathering at barns 3, 4, or 5.

输入描述

  • Line 1: A single integer: N
  • Lines 2..N+1: Line i+1 contains a single integer: \(C_i\)
  • Lines N+2..2*N: Line i+N+1 contains three integers: \(A_i\), \(B_i\), and \(L_i\)

输出描述

  • Line 1: The minimum inconvenience possible

示例1

输入

5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3

输出

15

题解

知识点:树形dp。

题目给了一个树,树边有边权表示距离,节点有点权表示牛的数量,现在要选一个树上点,使得所有牛到这个点的距离最小。因此,这是一个二次扫描+换根dp的问题,因为是解决每个点对于整棵树的问题。

第一遍dp,先以 \(1\) 为根,得出节点 \(1\) 的答案(当然可选其他点作为根)。设 \(dp[u]\) 为从 \(u\) 开始到以 \(u\) 为根的子树中各个节点牛的总距离。转移方程为:

\[dp[u] = \sum (dp[v] + sz[v] \cdot w)
\]

第二遍dp,从 \(1\) 出发,处理所有节点的答案。设 \(dp'[u]\) 为从 \(u\) 到牛的总距离,则有转移方程:

\[dp'[v] = dp'[u] + (sz[1] - 2 \cdot sz[v])
\]

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int a[100007];
vector<pair<int, int>> g[100007];
ll sz[100007], dp[100007]; void dfs1(int u, int fa) {
sz[u] = a[u];
for (auto [v, w] : g[u]) {
if (v == fa) continue;
dfs1(v, u);
sz[u] += sz[v];
dp[u] += dp[v] + sz[v] * w;
}
} void dfs2(int u, int fa) {
for (auto [v, w] : g[u]) {
if (v == fa) continue;
dp[v] = dp[u] + (sz[1] - 2 * sz[v]) * w;
dfs2(v, u);
}
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i < n;i++) {
int u, v, w;
cin >> u >> v >> w;
g[u].push_back({ v,w });
g[v].push_back({ u,w });
}
dfs1(1, 0);
dfs2(1, 0);
//for (int i = 1;i <= n;i++) cout << dp[i] << ' ';
ll ans = ~(1LL << 63);
for (int i = 1;i <= n;i++) ans = min(ans, dp[i]);
cout << ans << '\n';
return 0;
}

NC24734 [USACO 2010 Mar G]Great Cow Gathering的更多相关文章

  1. BZOJ1827[USACO 2010 Mar Gold 1.Great Cow Gathering]——树形DP

    题目描述 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,000) 个农场 ...

  2. BZOJ1785[USACO 2010 Jan Gold 3.Cow Telephones]——贪心

    题目描述 奶牛们建立了电话网络,这个网络可看作为是一棵无根树连接n(1 n 100,000)个节点,节点编号为1 .. n.每个节点可能是(电话交换机,或者电话机).每条电话线连接两个节点.第i条电话 ...

  3. BZOJ1828[USACO 2010 Mar Gold 2.Barn Allocation]——贪心+线段树

    题目描述 输入 第1行:两个用空格隔开的整数:N和M * 第2行到N+1行:第i+1行表示一个整数C_i * 第N+2到N+M+1行: 第i+N+1行表示2个整数 A_i和B_i 输出 * 第一行: ...

  4. BZOJ1915[USACO 2010 Open Gold 1.Cow Hopscotch]——DP+斜率优化

    题目描述 奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子,(3 <=N <= 250,000),编号为1..N.就像任何一个好游戏一样,这样的跳格 ...

  5. NC24840 [USACO 2009 Mar S]Look Up

    NC24840 [USACO 2009 Mar S]Look Up 题目 题目描述 Farmer John's N (1 <= N <= 100,000) cows, convenient ...

  6. NC25025 [USACO 2007 Nov G]Sunscreen

    NC25025 [USACO 2007 Nov G]Sunscreen 题目 题目描述 To avoid unsightly burns while tanning, each of the \(C\ ...

  7. NC24325 [USACO 2012 Mar S]Flowerpot

    NC24325 [USACO 2012 Mar S]Flowerpot 题目 题目描述 Farmer John has been having trouble making his plants gr ...

  8. NC24724 [USACO 2010 Feb S]Chocolate Eating

    NC24724 [USACO 2010 Feb S]Chocolate Eating 题目 题目描述 Bessie has received \(N (1 <= N <= 50,000)\ ...

  9. [USACO 2009 Mar S]Look Up_via牛客网

    题目 链接:https://ac.nowcoder.com/acm/contest/28537/N 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言 ...

  10. BZOJ3476 : [Usaco2014 Mar]The Lazy Cow

    旋转坐标系后转化为正方形,$x'=x+y$,$y'=x-y+1000001$,$k'=2k-1$ 两根扫描线从左往右扫 f[i]表示y坐标下边界为i时的价值和 每次加入/删除一个点等价于一段区间加减 ...

随机推荐

  1. STM32CubeMX教程20 SPI - W25Q128驱动

    1.准备材料 开发板(正点原子stm32f407探索者开发板V2.4) STM32CubeMX软件(Version 6.10.0) 野火DAP仿真器 keil µVision5 IDE(MDK-Arm ...

  2. Java之利用openCsv导出csv文件

    当时导入的时候用的openCsv,那么导出的时候自然也是用这个,查了好多资料才找到解决方案,下面记录一下实现过程. 1.Controller层: /** * 导出csv文件 */ @RequestMa ...

  3. [转帖]ARM内核全解析,从ARM7,ARM9到Cortex-A7,A8,A9,A12,A15到Cortex-A53,A57

    https://www.cnblogs.com/senior-engineer/p/8668723.html 前不久ARM正式宣布推出新款ARMv8架构的Cortex-A50处理器系列产品,以此来扩大 ...

  4. 阿里的AIGC数据库工具: Chat2DB的学习与使用

    阿里的AIGC数据库工具: Chat2DB的学习与使用 背景 今天陪家中老人去完医院后, 继续回来学习时发现 阿里巴巴的 chat2DB已经发布的 2.0.1的版本. 想着下载下来试试. 主要也是备忘 ...

  5. [转帖]Jmeter压力测试工具安装及使用教程

    https://www.cnblogs.com/monjeo/p/9330464.html 一.Jmeter下载 进入官网:http://jmeter.apache.org/ 1.第一步进入官网如下图 ...

  6. systemctl 关闭图形界面的办法

    开机以命令模式启动,执行: systemctl set-default multi-user.target   开机以图形界面启动,执行: systemctl set-default graphica ...

  7. CoreDNS的配置文件修改

    CoreDNS的配置文件修改 今天浪费了4个小时来调整coredns 这里简单记录一下 注意修改点: 1 kubernetes cluster.local. 需要增加集群内的配置 2 forward ...

  8. ES6 Array.fiill()的用法

    简单使用 // arr.fill(value, start, end) // value填充的值 // start填充的起始位置包含 // end填充的结束值,不包含,如果省略这个参数,表示从起始位置 ...

  9. 玩一玩 VictoriaLogs

    作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢! cnblogs博客 zhihu Github 公众号:一本正经的瞎扯 下载 see: https://github.com/Vi ...

  10. 【JS 逆向百例】反混淆入门,某鹏教育 JS 混淆还原

    关注微信公众号:K哥爬虫,持续分享爬虫进阶.JS/安卓逆向等技术干货! 声明 本文章中所有内容仅供学习交流,抓包内容.敏感网址.数据接口均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后 ...