NC24734 [USACO 2010 Mar G]Great Cow Gathering
题目
题目描述
Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place.
Each cow lives in one of N (1 <= N <= 100,000) different barns (conveniently numbered 1..N) which are connected by N-1 roads in such a way that it is possible to get from any barn to any other barn via the roads. Road i connects barns \(A_i\) and \(B_i\) (1 <= \(A_i\) <= N; 1 <= \(B_i\) <= N) and has length \(L_i\) (1 <= \(L_i\) <= 1,000). The Great Cow Gathering can be held at any one of these N barns. Moreover, barn i has \(C_i\) (0 <= \(C_i\) <= 1,000) cows living in it.
When choosing the barn in which to hold the Cow Gathering, Bessie wishes to maximize the convenience (which is to say minimize the inconvenience) of the chosen location. The inconvenience of choosing barn X for the gathering is the sum of the distances all of the cows need to travel to reach barn X (i.e., if the distance from barn i to barn X is 20, then the travel distance is \(C_i*20\)). Help Bessie choose the most convenient location for the Great Cow Gathering.
Consider a country with five barns with [various capacities] connected by various roads of varying lengths. In this set of barns, neither barn 3 nor barn 4 houses any cows.
1 3 4 5
@--1--@--3--@--3--@[2]
[1] |
2
|
@[1]
2
Bessie can hold the Gathering in any of five barns; here is the table of inconveniences calculated for each possible location: Gather ----- Inconvenience ------
Location B1 B2 B3 B4 B5 Total
1 0 3 0 0 14 17
2 3 0 0 0 16 19
3 1 2 0 0 12 15
4 4 5 0 0 6 15
5 7 8 0 0 0 15
If Bessie holds the gathering in barn 1, then the inconveniences from each barn are:
Barn 1 0 -- no travel time there!
Barn 2 3 -- total travel distance is 2+1=3 x 1 cow = 3
Barn 3 0 -- no cows there!
Barn 4 0 -- no cows there!
Barn 5 14 -- total travel distance is 3+3+1=7 x 2 cows = 14
So the total inconvenience is 17.
The best possible convenience is 15, achievable at by holding the
Gathering at barns 3, 4, or 5.
输入描述
- Line 1: A single integer: N
- Lines 2..N+1: Line i+1 contains a single integer: \(C_i\)
- Lines N+2..2*N: Line i+N+1 contains three integers: \(A_i\), \(B_i\), and \(L_i\)
输出描述
- Line 1: The minimum inconvenience possible
示例1
输入
5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3
输出
15
题解
知识点:树形dp。
题目给了一个树,树边有边权表示距离,节点有点权表示牛的数量,现在要选一个树上点,使得所有牛到这个点的距离最小。因此,这是一个二次扫描+换根dp的问题,因为是解决每个点对于整棵树的问题。
第一遍dp,先以 \(1\) 为根,得出节点 \(1\) 的答案(当然可选其他点作为根)。设 \(dp[u]\) 为从 \(u\) 开始到以 \(u\) 为根的子树中各个节点牛的总距离。转移方程为:
\]
第二遍dp,从 \(1\) 出发,处理所有节点的答案。设 \(dp'[u]\) 为从 \(u\) 到牛的总距离,则有转移方程:
\]
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int a[100007];
vector<pair<int, int>> g[100007];
ll sz[100007], dp[100007];
void dfs1(int u, int fa) {
sz[u] = a[u];
for (auto [v, w] : g[u]) {
if (v == fa) continue;
dfs1(v, u);
sz[u] += sz[v];
dp[u] += dp[v] + sz[v] * w;
}
}
void dfs2(int u, int fa) {
for (auto [v, w] : g[u]) {
if (v == fa) continue;
dp[v] = dp[u] + (sz[1] - 2 * sz[v]) * w;
dfs2(v, u);
}
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i < n;i++) {
int u, v, w;
cin >> u >> v >> w;
g[u].push_back({ v,w });
g[v].push_back({ u,w });
}
dfs1(1, 0);
dfs2(1, 0);
//for (int i = 1;i <= n;i++) cout << dp[i] << ' ';
ll ans = ~(1LL << 63);
for (int i = 1;i <= n;i++) ans = min(ans, dp[i]);
cout << ans << '\n';
return 0;
}
NC24734 [USACO 2010 Mar G]Great Cow Gathering的更多相关文章
- BZOJ1827[USACO 2010 Mar Gold 1.Great Cow Gathering]——树形DP
题目描述 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,000) 个农场 ...
- BZOJ1785[USACO 2010 Jan Gold 3.Cow Telephones]——贪心
题目描述 奶牛们建立了电话网络,这个网络可看作为是一棵无根树连接n(1 n 100,000)个节点,节点编号为1 .. n.每个节点可能是(电话交换机,或者电话机).每条电话线连接两个节点.第i条电话 ...
- BZOJ1828[USACO 2010 Mar Gold 2.Barn Allocation]——贪心+线段树
题目描述 输入 第1行:两个用空格隔开的整数:N和M * 第2行到N+1行:第i+1行表示一个整数C_i * 第N+2到N+M+1行: 第i+N+1行表示2个整数 A_i和B_i 输出 * 第一行: ...
- BZOJ1915[USACO 2010 Open Gold 1.Cow Hopscotch]——DP+斜率优化
题目描述 奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子,(3 <=N <= 250,000),编号为1..N.就像任何一个好游戏一样,这样的跳格 ...
- NC24840 [USACO 2009 Mar S]Look Up
NC24840 [USACO 2009 Mar S]Look Up 题目 题目描述 Farmer John's N (1 <= N <= 100,000) cows, convenient ...
- NC25025 [USACO 2007 Nov G]Sunscreen
NC25025 [USACO 2007 Nov G]Sunscreen 题目 题目描述 To avoid unsightly burns while tanning, each of the \(C\ ...
- NC24325 [USACO 2012 Mar S]Flowerpot
NC24325 [USACO 2012 Mar S]Flowerpot 题目 题目描述 Farmer John has been having trouble making his plants gr ...
- NC24724 [USACO 2010 Feb S]Chocolate Eating
NC24724 [USACO 2010 Feb S]Chocolate Eating 题目 题目描述 Bessie has received \(N (1 <= N <= 50,000)\ ...
- [USACO 2009 Mar S]Look Up_via牛客网
题目 链接:https://ac.nowcoder.com/acm/contest/28537/N 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言 ...
- BZOJ3476 : [Usaco2014 Mar]The Lazy Cow
旋转坐标系后转化为正方形,$x'=x+y$,$y'=x-y+1000001$,$k'=2k-1$ 两根扫描线从左往右扫 f[i]表示y坐标下边界为i时的价值和 每次加入/删除一个点等价于一段区间加减 ...
随机推荐
- mysql 用户及用户权限管理命令总结-用户添加及添加权限
本文为博主原创,转载请注明出处: linux 使用root 用户登录mysql 1. 添加用户,并设置用户登录密码: 格式: create user user_name@'ip' identifie ...
- 分享一个简单的使用js格式化json的代码
今天给大家分享一段json格式化代码. 假设json字符串是: {"name":"刘德华","age":25.2,"birthda ...
- 码农的转型之路-IoTBrowser(物联网浏览器)雏形上线
消失了半个月闭门造轮子去了,最近干了几件大事: 1.工控盒子,win10系统长时间跑物联网服务测试.运行快2周了,稳定性效果还满意,除了windows自动更新重启了一次. 2 .接触了一些新概念MQT ...
- arm-none-eabi-objcopy 使用说明
译文 NAME objcopy - copy and translate object files 概要 objcopy [-F bfdname|--target=bfdname] [-I bfdna ...
- [转帖]MySQL联合索引(复合索引)
Mysql联合唯一索引添加相同数据插入报错 联合索引在两个字段都存在唯一,将报错. 1.添加联合索引 alter table "表名" add unique index(`字段1` ...
- [转帖]金仓数据库KingbaseES V8R6索引坏块故障处理
案例说明: 在执行表数据查询时,出现下图所示错误,索引故障导致表无法访问,后重建索引问题解决.本案例复现了此类故障解决过程. 适用版本: KingbaseES V8R3/R6 一.创建测试环境 # 表 ...
- [转帖]学会BeanShell,才敢说自己懂Jmeter
https://baijiahao.baidu.com/s?id=1717349581352944280&wfr=spider&for=pc jmeter的BeanShell Sa ...
- Stream的简单学习
Stream的简单学习 前言 https://github.com/jeffhammond/STREAM unzip STREAM-master.zip cd /STREAM-master/ make ...
- [转帖]焱融全闪系列科普| 为什么 SSD 需要 NVMe?
https://xie.infoq.cn/article/7026237b455c7d62f33afc4a9 NVMe 的由来 目前机械硬盘大多数使用 SATA (Serial ATA Advance ...
- Git - 关联远程仓库以及同时使用Lab和Hub
更新一下,感觉有更简单的方式 就比如你git config 的 全局的name和email是lab的 那就clone github上的项目然后设置局部的name和email就行了 ********** ...