雪花算法(SnowFlake)
引言
唯一ID可以标识数据的唯一性,在分布式系统中生成唯一ID的方案有很多,常见的方式大概有以下三种:
- 依赖数据库,使用如MySQL自增列或Oracle序列等。
- UUID随机数
- snowflake雪花算法(本文将要讨论)
数据库和UUID方案的不足之处
1.采用数据库自增序列
读写分离时,只有主节点可以进行写操作,可能有单点故障的风险
分表分库,数据迁移合并等比较麻烦
2.UUID随机数
采用无意义字符串,没有排序
UUID使用字符串形式存储,数据量大时查询效率比较低
雪花算法原理
SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:
其中
1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。
41bit-时间戳,用来记录时间戳,毫秒级。
- 41位可以表示个数字,
- 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 ,减1是因为可表示的数值范围是从0开始算的,而不是1。
- 也就是说41位可以表示个毫秒的值,转化成单位年则是年
10bit-工作机器id,用来记录工作机器id。
- 可以部署在个节点,包括5位datacenterId和5位workerId
- 5位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId
12bit-序列号,用来记录同毫秒内产生的不同id。
- 12位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号。
由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。
SnowFlake可以保证:
- 所有生成的id按时间趋势递增
- 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)
Java实现
Twitter官方给出的算法实现 是用Scala写的,这里不做分析,可自行查看。
public class IdWorker{
//下面两个每个5位,加起来就是10位的工作机器id
private long workerId; //工作id
private long datacenterId; //数据id
//12位的序列号
private long sequence;
public IdWorker(long workerId, long datacenterId, long sequence){
// sanity check for workerId
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
}
System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
}
//初始时间戳
private long twepoch = 1288834974657L;
//长度为5位
private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
//最大值
private long maxWorkerId = -1L ^ (-1L << workerIdBits);
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
//序列号id长度
private long sequenceBits = 12L;
//序列号最大值
private long sequenceMask = -1L ^ (-1L << sequenceBits);
//工作id需要左移的位数,12位
private long workerIdShift = sequenceBits;
//数据id需要左移位数 12+5=17位
private long datacenterIdShift = sequenceBits + workerIdBits;
//时间戳需要左移位数 12+5+5=22位
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
//上次时间戳,初始值为负数
private long lastTimestamp = -1L;
public long getWorkerId(){
return workerId;
}
public long getDatacenterId(){
return datacenterId;
}
public long getTimestamp(){
return System.currentTimeMillis();
}
//下一个ID生成算法
public synchronized long nextId() {
long timestamp = timeGen();
//获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常
if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
lastTimestamp - timestamp));
}
//获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
}
//将上次时间戳值刷新
lastTimestamp = timestamp;
/**
* 返回结果:
* (timestamp - twepoch) << timestampLeftShift) 表示将时间戳减去初始时间戳,再左移相应位数
* (datacenterId << datacenterIdShift) 表示将数据id左移相应位数
* (workerId << workerIdShift) 表示将工作id左移相应位数
* | 是按位或运算符,例如:x | y,只有当x,y都为0的时候结果才为0,其它情况结果都为1。
* 因为个部分只有相应位上的值有意义,其它位上都是0,所以将各部分的值进行 | 运算就能得到最终拼接好的id
*/
return ((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence;
}
//获取时间戳,并与上次时间戳比较
private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
//获取系统时间戳
private long timeGen(){
return System.currentTimeMillis();
}
//---------------测试---------------
public static void main(String[] args) {
IdWorker worker = new IdWorker(1,1,1);
for (int i = 0; i < 30; i++) {
System.out.println(worker.nextId());
}
}
}
算法中大量使用位运算,计算机对位运算操作非常快,这里不对位运算做过多解释。
雪花算法(SnowFlake)的更多相关文章
- 雪花算法-snowflake
雪花算法-snowflake 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有 ...
- 分布式系统-主键唯一id,订单编号生成-雪花算法-SnowFlake
分布式系统下 我们每台设备(分布式系统-独立的应用空间-或者docker环境) * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作 ...
- Twitter雪花算法 SnowFlake算法 的java实现
概述 SnowFlake算法是Twitter设计的一个可以在分布式系统中生成唯一的ID的算法,它可以满足Twitter每秒上万条消息ID分配的请求,这些消息ID是唯一的且有大致的递增顺序. 原理 Sn ...
- 【Java】分布式自增ID算法---雪花算法 (snowflake,Java版)
一般情况,实现全局唯一ID,有三种方案,分别是通过中间件方式.UUID.雪花算法. 方案一,通过中间件方式,可以是把数据库或者redis缓存作为媒介,从中间件获取ID.这种呢,优点是可以体现全局的递增 ...
- 雪花算法(snowflake)delphi版
雪花算法简单描述: + 最高位是符号位,始终为0,不可用. + 41位的时间序列,精确到毫秒级,41位的长度可以使用69年.时间位还有一个很重要的作用是可以根据时间进行排序. + 10位的机器标识,1 ...
- 雪花算法 Snowflake & Sonyflake
唯一ID算法Snowflake相信大家都不墨生,他是Twitter公司提出来的算法.非常广泛的应用在各种业务系统里.也因为Snowflake的灵活性和缺点,对他的改造层出不穷,比百度的UidGener ...
- 分布式唯一ID生成方案选型!详细解析雪花算法Snowflake
分布式唯一ID 使用RocketMQ时,需要使用到分布式唯一ID 消息可能会发生重复,所以要在消费端做幂等性,为了达到业务的幂等性,生产者必须要有一个唯一ID, 需要满足以下条件: 同一业务场景要全局 ...
- Twitter雪花算法SnowFlake算法的java实现
https://juejin.im/post/5c75132f51882562276c5065 package javaDemo; /** * twitter的snowflake算法 -- java实 ...
- 一秒可生成500万ID的分布式自增ID算法—雪花算法 (Snowflake,Delphi 版)
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...
- 分布式ID生成系统 UUID与雪花(snowflake)算法
Leaf——美团点评分布式ID生成系统 -https://tech.meituan.com/MT_Leaf.html 网游服务器中的GUID(唯一标识码)实现-基于snowflake算法-云栖社区-阿 ...
随机推荐
- [FE] 推荐两个能全球访问的 CDN 前端资源仓库
https://unpkg.com/ https://cdnjs.com/ 部分资源库的版本不全. 访问速度请自行评估. Link:https://www.cnblogs.com/farwish/p/ ...
- WPF 通过 EXIF 设置和读取图片的旋转信息
本文将告诉大家如何在 WPF 里面设置图片的 EXIF 信息,包括如何设置图片的旋转信息,以及如何读取 EXIF 的内容 值得一提的是在 WPF 里面,默认的图片渲染信息是无视 System.Phot ...
- dotnet 使用 NamedPipeClientStream 连接一个不存在管道服务名将不断空跑 CPU 资源
本文记录一个开发和代码审查过程中,需要关注的细节.在 dotnet 里,在 .NET 6 和以下版本,包括 .NET Framework 版本,使用 NamedPipeClientStream 进行连 ...
- 魔方OA 数据字典
https://gitee.com/mojocube/mc-oa/blob/master/Data/%E6%95%B0%E6%8D%AE%E5%BA%93%E8%84%9A%E6%9C%AC.sql ...
- 【GUI软件】抖音搜索结果批量采集,支持多个关键词、排序方式、发布时间筛选等!
目录 一.背景介绍 1.1 爬取目标 1.2 演示视频 1.3 软件说明 二.代码讲解 2.1 爬虫采集模块 2.2 软件界面模块 2.3 日志模块 三.获取源码及软件 一.背景介绍 1.1 爬取目标 ...
- blazor优雅的方式导入组件相关的js脚本
基本的组件导入方式为: 1 await JsRuntime.InvokeVoidAsync("import", $"XXXXX.js"); 优雅的组件导入方式: ...
- Linux中的touch命令
Linux中一个文件有3种时间属性,分别是mtime,ctime,atime: modification time (mtime) 当该文件的『内容数据』变更时,就会升级这个时间!内容数据指的是文件的 ...
- Ubuntu中安装OpenSSL
一.前期准备 1.1 压缩包下载 在安装openssl之前,我们需要下载对应的压缩包 https://www.openssl.org/source/openssl-3.0.1.tar.gz 此压缩包可 ...
- Javascript返回顶部和砸金蛋,跑马灯等游戏代码实现
1. 我们经常写页面的时候会遇到页面很长需要做返回顶部的操作:$("id /class").animate({scrollTop:$('.class').offset().top} ...
- 二分法(POJ-1064与POJ-2456)
二分查找,简而言之就是在一个有序的序列中找一个元素,因为这些元素已经有序,所以每次都将要找的数跟待寻找序列的中间元素比较,如果要找的数大于中间元素,说明接下来只需要在该序列的右半边中找,所以可以不用管 ...