IMDB-二分类问题
from keras.datasets import imdb
from keras.utils.np_utils import to_categorical
import numpy as np
from keras import models
from keras import layers
import matplotlib.pyplot as plt
#one-hot编码
def vectorize_sequences(sequences,dimension = 10000):
results = np.zeros((len(sequences),dimension))
for i,sequence in enumerate(sequences):
results[i,sequence] = 1
return results
#imdb是一个二分类问题
#一共有5w条数据,2.5w用于训练,2.5w用于测试
#每条数据是一个list,list里保存的是英文单词对应的排序
#num_words=10000表示保留前1w个常出现的单词
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=10000)
#下面的代码用来解码第一条数据的内容
data = x_train[0]
#word_index是一个dict,保存的是英文单词:单词排序位置
word_index = imdb.get_word_index()
index_word = dict((index,word) for (word,index) in word_index.items())
#i-3是because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown".
data = ''.join(index_word.get(i-3,'?') for i in data)
######################################################
#神经网络的输入得是一个张量,使用one-hot编码处理数据
x_train = vectorize_sequences(x_train)
x_test = vectorize_sequences(x_test)
#keras的输入数据要转换为float类型,y是int类型,做一个类型转换 #构建神经网络
network = models.Sequential()
network.add(layers.Dense(16,activation='relu'))
network.add(layers.Dense(16,activation='relu'))
network.add(layers.Dense(1,activation='sigmoid')) #选择优化器、损失函数、评估准则
network.compile('rmsprop',loss='binary_crossentropy',metrics=['accuracy']) #训练模型
history = network.fit(x_train,y_train,epochs=5,batch_size=512,validation_split=0.2) history_dict = history.history
loss = history_dict['loss']
val_loss = history_dict['val_loss']
acc = history_dict['acc']
val_acc = history_dict['val_acc'] epochs = range(1,6)
#loss的图
plt.subplot(121)
plt.plot(epochs,loss,'g',label = 'Training loss')
plt.plot(epochs,val_loss,'b',label = 'Validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
#显示图例
plt.legend() plt.subplot(122)
plt.plot(epochs,acc,'g',label = 'Training accuracy')
plt.plot(epochs,val_acc,'b',label = 'Validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('accuracy')
plt.legend()
plt.show() pre = network.predict(x_test)
print(pre)
print(y_test)

IMDB-二分类问题的更多相关文章
- 基于Keras的imdb数据集电影评论情感二分类
IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行.)中找到下载,下载后放到~/.keras/datasets/目录下,即可正 ...
- 电影评论分类:二分类问题(IMDB数据集)
IMDB数据集是Keras内部集成的,初次导入需要下载一下,之后就可以直接用了. IMDB数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的250 ...
- Python深度学习案例1--电影评论分类(二分类问题)
我觉得把课本上的案例先自己抄一遍,然后将书看一遍.最后再写一篇博客记录自己所学过程的感悟.虽然与课本有很多相似之处.但自己写一遍感悟会更深 电影评论分类(二分类问题) 本节使用的是IMDB数据集,使用 ...
- Python深度学习读书笔记-6.二分类问题
电影评论分类:二分类问题 加载 IMDB 数据集 from keras.datasets import imdb (train_data, train_labels), (test_data, t ...
- 二分类问题 - 【老鱼学tensorflow2】
什么是二分类问题? 二分类问题就是最终的结果只有好或坏这样的一个输出. 比如,这是好的,那是坏的.这个就是二分类的问题. 我们以一个电影评论作为例子来进行.我们对某部电影评论的文字内容为好评和差评. ...
- 二分类问题续 - 【老鱼学tensorflow2】
前面我们针对电影评论编写了二分类问题的解决方案. 这里对前面的这个方案进行一些改进. 分批训练 model.fit(x_train, y_train, epochs=20, batch_size=51 ...
- keras框架下的深度学习(二)二分类和多分类问题
本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分 ...
- 【原】Spark之机器学习(Python版)(二)——分类
写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了.然而我在学习的过程中发现,PySpark很鸡肋( ...
- Kaggle实战之二分类问题
0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手 ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...
随机推荐
- django.core.exceptions.ImproperlyConfigured: Error loading MySQLdb module: No module named 'MySQLdb'. Did you install mysqlclient or MySQL-python?
Error msg: Unhandled exception in thread started by <function check_errors.<locals>.wrapper ...
- AtCoder Grand Contest 032-B - Balanced Neighbors (构造)
Time Limit: 2 sec / Memory Limit: 1024 MB Score : 700700 points Problem Statement You are given an i ...
- Arguments Optional 计算两个参数之和的 function
创建一个计算两个参数之和的 function.如果只有一个参数,则返回一个 function,该 function 请求一个参数然后返回求和的结果. 例如,add(2, 3) 应该返回 5,而 add ...
- Django(七)缓存、信号、Form
大纲 一.缓存 1.1.五种缓存配置 1.2配置 2.1.三种应用(全局.视图函数.模板) 2.2 应用多个缓存时生效的优先级 二.信号 1.Django内置信号 2.自定义信号 三.Form 1.初 ...
- WebSocket群聊与单聊
一 . WebSocket实现群聊 py文件代码 # py文件 from flask import Flask, render_template, request from geventwebsock ...
- 利用Python查看微信共同好友
思路 首先通过itchat这个微信个人号接口扫码登录个人微信网页版,获取可以识别好友身份的数据.这里是需要分别登录两人微信的,拿到两人各自的好友信息存到列表中. 这样一来,查共同好友就转化成了查两个列 ...
- Spring Boot(二):数据库操作
本文主要讲解如何通过spring boot来访问数据库,本文会演示三种方式来访问数据库,第一种是JdbcTemplate,第二种是JPA,第三种是Mybatis.之前已经提到过,本系列会以一个博客系统 ...
- delphi中响应鼠标进入或离开控件的方法
Delphi没有MouseEnter与MouseLeave的事件,网上说可以响应CM_MOUSEENTER和CM_MOUSELEAVE消息来实现.这两个消息是VCL自己定义的消息,看了Delphi的C ...
- BZOJ5507 GXOI/GZOI2019旧词 (树链剖分+线段树)
https://www.cnblogs.com/Gloid/p/9412357.html差分一下是一样的问题.感觉几年没写过树剖了. #include<iostream> #include ...
- 用CNN对CIFAR10进行分类(pytorch)
CIFAR10有60000个\(32*32\)大小的有颜色的图像,一共10种类别,每种类别有6000个. 训练集一共50000个图像,测试集一共10000个图像. 先载入数据集 import nump ...