堆应用---构造Huffman树(C++实现)
堆:
堆是STL中priority_queue的最高效的实现方式(关于priority_queue的用法:http://www.cnblogs.com/flyoung2008/articles/2136485.html)。
主要分为大根堆和小根堆。
是一棵完全二叉树。
堆的一次插入删除调整的时间复杂度都是logn。
Huffman树:
又称最优二叉树(带权路径中),带权路径长度最小的二叉树应是权值大的外节点离根结点最近的扩充二叉树(权值都在叶节点的二叉树)就是Huffman树。
算法:
将权值对应的节点全部放入一个小根堆中。
每次取出堆顶的两个节点,构造成一个新的节点,循环n-1次(n为节点数量)。
代码如下:
#include<iostream>
using namespace std;
template<class T>
struct TreeNode{
T data;//节点值
TreeNode<T> *left,*right,*parent;//左右孩子
TreeNode(){
left=NULL;
right=NULL;
parent=NULL;
}
TreeNode(T x,TreeNode<T> *l=NULL,TreeNode<T> *r=NULL,TreeNode<T> *p=NULL){
data=x;
left=l;
right=r;
parent=p;
}
bool operator <=(TreeNode<T> &r){
return data<=r.data;
}
bool operator <(TreeNode<T> &r){
return data<r.data;
}
bool operator >=(TreeNode<T> &r){
return data>=r.data;
}
bool operator >(TreeNode<T> &r){
return data>r.data;
}
}; template<class T>
class MinHeap{//最小堆
private:
T *heap;//堆数组
int maxSize;//堆最大容量
int currentSize;//当前容量
public:
MinHeap(int sz=){
maxSize=sz;
heap=new T[maxSize];
currentSize=;
}
~MinHeap(){
delete []heap;
}
T* getHeap(){
return heap;
}
void siftDown(int start,int m){//向下调整堆数组
int i=start;
int j=*i+;
T temp=heap[i];
while(j<=m){
if(j<m&&*heap[j]>*heap[j+]) j++;
if(*temp<=*heap[j]) break;
heap[i]=heap[j];
i=j;
j=*j+;
}
heap[i]=temp;
}
void siftUp(int start){//向上调整堆数组
int i=start;
int j=(i-)/;
T temp=heap[i];
while(i>){
if(*temp>=*heap[j]) break;
heap[i]=heap[j];
i=j;
j=(i-)/;
}
heap[i]=temp;
}
bool insert(const T& x){//插入元素
if(currentSize==maxSize) return false;
heap[currentSize]=x;
siftUp(currentSize);
currentSize++;
return true;
}
bool remove(T& x){//删除元素
if(!currentSize) return false;
x=heap[];
heap[]=heap[currentSize-];
currentSize--;
siftDown(,currentSize-);
return true;
}
}; template<class T>
class HuffmanTree{
public:
HuffmanTree(T w[],int n){//构造Huffman树
TreeNode<T> *temp,*first,*second,*parent;
MinHeap <TreeNode<T>* >hp;
for(int i=;i<n;i++){
temp=new TreeNode<T>(w[i]);
hp.insert(temp);
}
for(int i=;i<n-;i++){
first=new TreeNode<T>;
second=new TreeNode<T>;
hp.remove(first);
hp.remove(second);
parent=new TreeNode<T>;
merge(first,second,parent);
hp.insert(parent);
}
root=parent;
}
void merge(TreeNode<T> *first,TreeNode<T> *second,TreeNode<T>* parent){//选取两个最小带权节点合并
parent->left=first;
parent->right=second;
parent->data=first->data+second->data;
first->parent=parent;
second->parent=parent;
}
~HuffmanTree(){
destroy(root);
}
void destroy(TreeNode<T> *subTree){//递归删除以subTree为根的所有结点
if(subTree!=NULL){
destroy(subTree->left);
destroy(subTree->right);
delete subTree;
}
}
void preOrder(TreeNode<T> *subTree){//前序遍历
if(subTree!=NULL){
cout<<subTree->data<<" ";
preOrder(subTree->left);
preOrder(subTree->right);
}
}
TreeNode<T> *getRoot(){
return root;
}
private:
TreeNode<T> *root;
}; int main(){
int N,*w;
cout<<"输入元素总数:"<<endl;
cin>>N;
w=new int[N];
cout<<"输入这组整数:"<<endl;
for(int i=;i<N;i++){
cin>>w[i];
}
HuffmanTree<int> *ht=new HuffmanTree<int>(w,N);
TreeNode<int> *root=ht->getRoot();
cout<<"Huffman树前序遍历结果:"<<endl;
ht->preOrder(root);
delete ht,w;
return ;
}
堆应用---构造Huffman树(C++实现)的更多相关文章
- Huffman树的构造及编码与译码的实现
哈夫曼树介绍 哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树.所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数) ...
- 构造数列Huffman树总耗费_蓝桥杯
快排! /** 问题描述 Huffman树在编码中有着广泛的应用.在这里,我们只关心Huffman树的构造过程. 给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的 ...
- 数据结构-二叉树(6)哈夫曼树(Huffman树)/最优二叉树
树的路径长度是从树根到每一个结点的路径长度(经过的边数)之和. n个结点的一般二叉树,为完全二叉树时取最小路径长度PL=0+1+1+2+2+2+2+… 带权路径长度=根结点到任意结点的路径长度*该结点 ...
- HUFFMAN 树
在一般的数据结构的书中,树的那章后面,著者一般都会介绍一下哈夫曼(HUFFMAN) 树和哈夫曼编码.哈夫曼编码是哈夫曼树的一个应用.哈夫曼编码应用广泛,如 JPEG中就应用了哈夫曼编码. 首先介绍什么 ...
- 数据结构与算法(周鹏-未出版)-第六章 树-6.5 Huffman 树
6.5 Huffman 树 Huffman 树又称最优树,可以用来构造最优编码,用于信息传输.数据压缩等方面,是一类有着广泛应用的二叉树. 6.5.1 二叉编码树 在计算机系统中,符号数据在处理之前首 ...
- Huffman树与编码
带权路径最小的二叉树称为最优二叉树或Huffman(哈夫曼树). Huffman树的构造 将节点的权值存入数组中,由数组开始构造Huffman树.初始化指针数组,指针指向含有权值的孤立节点. b = ...
- Huffman树
结点定义: /* * Huffman树结点定义 */ struct Node { ElementType weight; // 结点的权值 struct Node *leftChild; // 结点的 ...
- [ACM] POJ 3253 Fence Repair (Huffman树思想,优先队列)
Fence Repair Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 25274 Accepted: 8131 Des ...
- Java蓝桥杯练习题——Huffman树
Huffman树在编码中有着广泛的应用.在这里,我们只关心Huffman树的构造过程. 给出一列数{pi}={p0, p1, -, pn-1},用这列数构造Huffman树的过程如下: 找到{pi}中 ...
随机推荐
- win10怎么进入和退出安全模式?
在Win10系统里同时按下”Win+R“组合按键,在打开的运行对话框里输入命令:msconfig,然后点击确定,如下图所示. 点击打开系统配置窗口,选择引导选项卡,如下图所示. 在引导选项卡窗口下,将 ...
- 【心得】Lattice Diamond 后端约束实战小结
[博客导航] [导航]FPGA相关 IOB约束 参考<插入IO寄存器和位置约束---lattice&diamond>,推荐的方法是: 1.在strategy设置[Map Desig ...
- C#基础知识之IOC
依赖注入:http://www.cnblogs.com/leoo2sk/archive/2009/06/17/1504693.html IOC:https://jinnianshilongnian.i ...
- 随机数据生成与对拍【c++版,良心讲解】
10.7更新:见最下面 离NOIP2018没剩多长时间了,我突然发现我连对拍还不会,于是赶紧到网上找资料,找了半天发现了一个特别妙的程序,用c++写的! 不过先讲讲随机数据生成吧. 很简单,就是写一个 ...
- 【html】使用img标签和背景图片之间的区别
1.加载问题 背景图片会等到html结构加载完成才开始加载 img标签是网页结构的一部分,会在html结构加载的时候加载 在网页加载的过程中,背景图片会等到结构加载完成(网页的内容全部显示以后)才开始 ...
- Java多线程面试
1.说说进程.线程.协程之间的区别 简而言之,进程是程序运行和资源分配的基本单位,一个程序至少有一个进程,一个进程至少有一个线程.进程在执行过程中拥有独立的内存单元,而多个线程共享内存资源,减少切换次 ...
- 015_python原生在线调试工具
一.pdb https://docs.python.org/3/library/pdb.html
- 分享收集的WebGL 3D学习资源
大家好,我在本文中分享了我收集的WebGL 3D相关的博客.书籍.教程.demo等内容,希望对大家学习WebGL和3D有所帮助,谢谢- 相关博客 Wonder技术 Wonder是我们的产品,包含Web ...
- bboss oreach循环嵌套遍历map
foreach循环嵌套遍历mapforeach嵌套dsl脚本定义 <property name="dynamicInnerDsl"> <![CDATA[{ ## ...
- Java Web的简单项目部署
目录 项目介绍 安装并配置jdk和tomcat 安装并配置mysql 使用Eclipse导出war包 部署war包到服务器 导出项目的数据库 将项目的数据库导入服务器的数据库中 修改配置 重启Tomc ...