简单的说,sar -u看出来的cpu利用率iowait 不实用,iostat -x 中的 svctm   和util 参数

命令形式: iostat -x 1

每隔一秒输出下

其中的svctm参数代表平均每次设备I/O操作的服务时间 (毫秒),反应了磁盘的负载情况,如果该项大于15ms,并且util%接近100%,那就说明,磁盘现在是整个系统性能的瓶颈了。

await 参数代表平均每次设备I/O操作的等待时间 (毫秒), 也要多和 svctm 来参考。差的过高就一定有 IO 的问题。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明 I/O 队列太长,应用得到的响应时间变慢。

正常情况下svctm应该是小于await值的,而svctm的大小和磁盘性能有关,CPU、内存的负荷也会对svctm值造成影响,过多的请求也会间接的导致svctm值的增加。
await值的大小一般取决与svctm的值和I/O队列长度以及I/O请求模式,如果svctm的值与await很接近,表示几乎没有I/O等待,磁盘性能很好,如果await的值远高于svctm的值,则表示I/O队列等待太长,系统上运行的应用程序将变慢,此时可以通过更换更快的硬盘来解决问题。
%util项的值也是衡量磁盘I/O的一个重要指标,如果%util接近100%,表示磁盘产生的I/O请求太多,I/O系统已经满负荷的在工作,该磁盘可能存在瓶颈。长期下去,势必影响系统的性能,可以通过优化程序或者通过更换更高、更快的磁盘来解决此问题

svctm一项正常时间在20ms左右,原因:

高速cpu会造成很高的iowait值,但这并不代表磁盘是系统的瓶颈。唯一能说明磁盘是系统瓶颈的方法,就是很高的read/write时间,一般来说超过20ms,就代表了不太正常的磁盘性能。为什么是20ms呢?一般来说,一次读写就是一次寻到+一次旋转延迟+数据传输的时间。由于,现代硬盘数据传输就是几微秒或者几十微秒的事情,远远小于寻道时间2~20ms和旋转延迟4~8ms,所以只计算这两个时间就差不多了,也就是15~20ms。只要大于20ms,就必须考虑是否交给磁盘读写的次数太多,导致磁盘性能降低了。

%iowait并不能反应磁盘瓶颈

iowait实际测量的是cpu时间:
%iowait = (cpu idle time)/(all cpu time)

iostat来对linux硬盘IO性能进行了解

以前一直不太会用这个参数。现在认真研究了一下iostat,因为刚好有台重要的服务器压力高,所以放上来分析一下.下面这台就是IO有压力过大的服务器

$iostat -x 1
Linux 2.6.33-fukai (fukai-laptop)          _i686_    (2 CPU)
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
5.47    0.50    8.96   48.26    0.00   36.82

Device:         rrqm/s   wrqm/s     r/s     w/s   rsec/s   wsec/s avgrq-sz avgqu-sz   await  svctm  %util
sda               6.00   273.00   99.00    7.00  2240.00  2240.00    42.26     1.12   10.57   7.96  84.40
sdb               0.00     4.00    0.00  350.00     0.00  2068.00     5.91     0.55    1.58   0.54  18.80

rrqm/s:          每秒进行 merge 的读操作数目。即 delta(rmerge)/s
wrqm/s:         每秒进行 merge 的写操作数目。即 delta(wmerge)/s
r/s:            每秒完成的读 I/O 设备次数。即 delta(rio)/s
w/s:            每秒完成的写 I/O 设备次数。即 delta(wio)/s
rsec/s:         每秒读扇区数。即 delta(rsect)/s
wsec/s:         每秒写扇区数。即 delta(wsect)/s
rkB/s:          每秒读K字节数。是 rsect/s 的一半,因为每扇区大小为512字节。(需要计算)
wkB/s:          每秒写K字节数。是 wsect/s 的一半。(需要计算)
avgrq-sz:       平均每次设备I/O操作的数据大小 (扇区)。delta(rsect+wsect)/delta(rio+wio)
avgqu-sz:       平均I/O队列长度。即 delta(aveq)/s/1000 (因为aveq的单位为毫秒)。
await:          平均每次设备I/O操作的等待时间 (毫秒)。即 delta(ruse+wuse)/delta(rio+wio)
svctm:          平均每次设备I/O操作的服务时间 (毫秒)。即 delta(use)/delta(rio+wio)
%util:          一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间 I/O 队列是非空的。即 delta(use)/s/1000 (因为use的单位为毫秒)

如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。

idle小于70% IO压力就较大了,一般读取速度有较多的wait。

同时可以结合vmstat 查看查看b参数(等待资源的进程数)和wa参数(IO等待所占用的CPU时间的百分比,高过30%时IO压力高)

另外 await 的参数也要多和 svctm 来参考。差的过高就一定有 IO 的问题。

avgqu-sz 也是个做 IO 调优时需要注意的地方,这个就是直接每次操作的数据的大小,如果次数多,但数据拿的小的话,其实 IO 也会很小.如果数据拿的大,才IO 的数据会高。也可以通过 avgqu-sz × ( r/s or w/s ) = rsec/s or wsec/s.也就是讲,读定速度是这个来决定的。

另外还可以参考

svctm 一般要小于 await (因为同时等待的请求的等待时间被重复计算了),svctm 的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。await 的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明 I/O 队列太长,应用得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU。

队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。

别人一个不错的例子(I/O 系统 vs. 超市排队)

举一个例子,我们在超市排队 checkout 时,怎么决定该去哪个交款台呢? 首当是看排的队人数,5个人总比20人要快吧? 除了数人头,我们也常常看看前面人购买的东西多少,如果前面有个采购了一星期食品的大妈,那么可以考虑换个队排了。还有就是收银员的速度了,如果碰上了连钱都点不清楚的新手,那就有的等了。另外,时机也很重要,可能 5 分钟前还人满为患的收款台,现在已是人去楼空,这时候交款可是很爽啊,当然,前提是那过去的 5 分钟里所做的事情比排队要有意义 (不过我还没发现什么事情比排队还无聊的)。

I/O 系统也和超市排队有很多类似之处:

r/s+w/s 类似于交款人的总数

平均队列长度(avgqu-sz)类似于单位时间里平均排队人的个数

平均服务时间(svctm)类似于收银员的收款速度

平均等待时间(await)类似于平均每人的等待时间

平均I/O数据(avgrq-sz)类似于平均每人所买的东西多少

I/O 操作率 (%util)类似于收款台前有人排队的时间比例。

我们可以根据这些数据分析出 I/O 请求的模式,以及 I/O 的速度和响应时间。

下面是别人写的这个参数输出的分析

# iostat -x 1
avg-cpu: %user %nice %sys %idle
16.24 0.00 4.31 79.44
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/cciss/c0d0
0.00 44.90 1.02 27.55 8.16 579.59 4.08 289.80 20.57 22.35 78.21 5.00 14.29

上面的 iostat 输出表明秒有 28.57 次设备 I/O 操作: 总IO(io)/s = r/s(读) +w/s(写) = 1.02+27.55 = 28.57 (次/秒) 其中写操作占了主体 (w:r = 27:1)。

平均每次设备 I/O 操作只需要 5ms 就可以完成,但每个 I/O 请求却需要等上 78ms,为什么? 因为发出的 I/O 请求太多 (每秒钟约 29 个),假设这些请求是同时发出的,那么平均等待时间可以这样计算:

平均等待时间 = 单个 I/O 服务时间 * ( 1 + 2 + … + 请求总数-1) / 请求总数

应用到上面的例子: 平均等待时间 = 5ms * (1+2+…+28)/29 = 70ms,和 iostat 给出的78ms 的平均等待时间很接近。这反过来表明 I/O 是同时发起的。

每秒发出的 I/O 请求很多 (约 29 个),平均队列却不长 (只有 2 个左右),这表明这 29 个请求的到来并不均匀,大部分时间 I/O 是空闲的。

一秒中有 14.29% 的时间 I/O 队列中是有请求的,也就是说,85.71% 的时间里 I/O 系统无事可做,所有 29 个 I/O 请求都在142毫秒之内处理掉了。

delta(ruse+wuse)/delta(io) = await = 78.21 => delta(ruse+wuse)/s =78.21 * delta(io)/s = 78.21*28.57 = 2232.8,表明每秒内的I/O请求总共需要等待2232.8ms。所以平均队列长度应为 2232.8ms/1000ms = 2.23,而 iostat 给出的平均队列长度 (avgqu-sz) 却为 22.35,为什么?! 因为 iostat 中有 bug,avgqu-sz 值应为 2.23,而不是 22.35

iostat和iowait详细解说的更多相关文章

  1. Linux 系统管理命令 - iostat - I/O 信息统计

    命令详解 重要星级: ★★★★☆ 功能说明: iostat 是 I/O statistics ( 输入/输出统计 ) 的缩写,其主要功能是对系统的磁盘 I/O 操作进行监视.它的输出主要是显示磁盘读写 ...

  2. Slow ReadProcessor&Error Slow BlockReceiver错误日志分析(转)

    1.总结 "Slow ReadProcessor" 和"Slow BlockReceiver"往往是因为集群负载比较高或者某些节点不健康导致的,本文主要是帮助你 ...

  3. linux服务器宕机分析/性能瓶颈分析

    linux服务器宕机分析/性能瓶颈分析   服务器宕机原因很多,资源不足.应用.硬件.系统内核bug等,以下一个小例子 服务器宕机了,首先得知道服务器宕机的时间点,然后分析日志查找原因 1.last ...

  4. (转)SLOW READPROCESSOR;ERROR SLOW BLOCKRECEIVER错误日志分析

    1.总结 "Slow ReadProcessor" 和"Slow BlockReceiver"往往是因为集群负载比较高或者某些节点不健康导致的,本文主要是帮助你 ...

  5. 每天一个linux命令(47):iostat命令

    Linux系统​中的 iostat是I/O statistics(输入/输出统计)的缩写,iostat工具将对系统的磁盘操作活动进行监视.它的特点是汇报磁盘活动统计情况,同时也会汇报出CPU使用情况. ...

  6. Linux 使用iostat分析IO性能

    原文:http://www.cnblogs.com/bangerlee/articles/2547161.html 对于I/O-bond类型的进程,我们经常用iostat工具查看进程IO请求下发的数量 ...

  7. [转]iostat命令详解

    iostat iostat用于输出CPU和磁盘I/O相关的统计信息.  命令格式: iostat [ -c | -d ] [ -k | -m ] [ -t ] [ -V ] [ -x ] [ devi ...

  8. iostat命令学习

    iostat命令主要用于监控linux系统下cup和磁盘IO的统计信息 可以通过iostat --help获得该命令的帮助信息 [oracle@std ~]$ iostat --help Usage: ...

  9. iostat 命令

    iostat -x 1 10 Linux 2.6.18-92.el5xen 02/03/2009 avg-cpu: %user %nice %system %iowait %steal %idle 1 ...

随机推荐

  1. Visaul Studio 密钥

    vs professional 2015 简体中文版  :HMGNV-WCYXV-X7G9W-YCX63-B98R2

  2. 并行程序模拟(Concurrency Simulator, ACM/ICPC World Finals 1991,Uva210)

    任务介绍 你的任务是模拟n个程序的并行运算.(按照输入编号为1~n)的并行执行. 代码实现 #define LOCAL #include<bits/stdc++.h> using name ...

  3. Java常用类之StringBuffer

    StringBuffer 类: 1. java.lang.StringBuffer 代表可变的字符序列: 2. StringBuffer 和 String 类似,但是 StringBuffer 可以对 ...

  4. 九度oj 题目1495:关键点

    题目描述: 在一个无权图中,两个节点间的最短距离可以看成从一个节点出发到达另一个节点至少需要经过的边的个数. 同时,任意两个节点间的最短路径可能有多条,使得从一个节点出发可以有多条最短路径可以选择,并 ...

  5. ubuntu中下载sublime相关问题

    1.SublimeText3的安装 在网上搜索了一些ubuntu下关于sublime-text-3安装的方法,在这里针对自己尝试的情况进行反馈: 方法一(未成功): 在终端输入以下代码: sudo a ...

  6. python爬虫 妹子图片网

    代码如下 #coding=utf-8 import os import re import urllib from time import sleep import requests from lxm ...

  7. string字符串比较和替换

    我用的是小写的string!! #include <string> #include <iostream> using namespace std; int main() { ...

  8. python dict 字典

    字典是通过hash表的原理实现的,每个元素都是一个键值对,通过元素的键计算出一个唯一的哈希值,这个hash值决定了元素的地址,因此为了保证元素地址不一样,必须保证每个元素的键和对应的hash值是完全不 ...

  9. [C/C++] C++模板定义格式

    函数模板的格式: template <class 形参名,class 形参名,......> 返回类型 函数名(参数列表) { //函数体 } 类模板的格式为: template<c ...

  10. [OS] 进程互斥

    对互斥的正确软件实现算法(面包店算法)是非常耗时的,现代的计算机系统都会提供简单的硬件指令,使用这些指令能够有效地解决临界区问题. 硬件提供一个TestAndSet指令,来实现原子指令的功能: boo ...