存板子。O(nlogn)预处理,O(1)查询。空间O(nlogn)。

int d[1000006][25];
int mn[1000006];
void rmq_init()
{
for(int i=1;i<=n;i++)
d[i][0]=a[i];
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
d[i][j]=min(d[i][j-1],d[i+(1<<(j-1))][j-1]);
for(int len=1;len<=n;++len){
int k=0;
while((1<<(k+1))<=len)
k++;
mn[len]=k;
}
}
int rmq(int L,int R)
{
int k=mn[R-L+1];
return min(d[L][k],d[R-(1<<k)+1][k]);
}

rmq问题:ST表的更多相关文章

  1. 线段树(two value)与树状数组(RMQ算法st表)

    士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比 ...

  2. RMQ问题 - ST表的简单应用

    2017-08-26 22:25:57 writer:pprp 题意很简单,给你一串数字,问你给定区间中最大值减去给定区间中的最小值是多少? 用ST表即可实现 一开始无脑套模板,找了最大值,找了最小值 ...

  3. Codeforces 803G Periodic RMQ Problem ST表+动态开节点线段树

    思路: (我也不知道这是不是正解) ST表预处理出来原数列的两点之间的min 再搞一个动态开节点线段树 节点记录ans 和标记 lazy=-1 当前节点的ans可用  lazy=0 没被覆盖过 els ...

  4. RMQ、ST表

    ST表 \(\text{ST}\) 表是用于解决可重复贡献问题的数据结构. 可重复贡献问题:区间按位和.区间按位或.区间 \(\gcd\) .区间最大.区间最小等满足结合律且可重复统计的问题. 模板预 ...

  5. RMQ(ST表)

    #include<iostream> #include<cstdio> #include<cmath> using namespace std; int N, M, ...

  6. RMQ求解->ST表

    ST表 这是一种神奇的数据结构,用nlogn的空间与nlongn的预处理得出O(1)的区间最大最小值(无修) 那么来看看这个核心数组:ST[][] ST[i][j]表示从i到i+(1<<j ...

  7. RMQ的st表算法

    此算法可用来处理区间最值问题,预处理时间为O(nlogn),查询时间为O(1) 此算法主要基于倍增思想,用以数组st[i][j]表示从第i个元素开始向后搜2的j次方的最值 可用递推的方式求得:st[i ...

  8. 【模板】RMQ问题 ST表

    洛谷3865 #include<cstdio> #include<algorithm> #include<cmath> using namespace std; ; ...

  9. 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)

    题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...

  10. st表 LCA

    我当时知道ST表可以 \(O(1)\) 求 LCA 的时候是极为震惊的,可以在需要反复使用 LCA 的时候卡常使用. ST表!用于解决 RMQ问题 ST表 我可能写得不好,看专业的 怎么实现? 考虑把 ...

随机推荐

  1. 14、char和varchar的区别?

    就长度来说: ♣ char的长度是不可变的; ♣ 而varchar的长度是可变的,也就是说,定义一个char[10]和varchar[10],如果存进去的是‘csdn’,那么char所占的长度依然为1 ...

  2. Winform Socket通信

    Socket相关概念[端口] 在Internet上有很多这样的主机,这些主机一般运行了多个服务软件,同时提供几种服务.每种服务都打开一个Socket,并绑定到一个端口上,不同的端口对应于不同的服务(应 ...

  3. CSS哪些样式属性可以继承

    不可继承的:display.margin.border.padding.background.height.min-height.max- height.width.min-width.max-wid ...

  4. bzoj 1305 二分+最大流判定|贪心

    首先我们二分一个答案mid,在判定是否能举办mid次,那么对于每个次我们可以用最大流根据是否满流(流量为n*mid)来判定,对于每个点我们拆成两个点,分别表示这个人要和他喜欢和不喜欢的人一起跳舞,那么 ...

  5. Python3 shelve模块(持久化)

    shelve模块 也可以序列化Python所有数据类型,而且可以多次序列化;shelve模块通过key-value方式持久化 1.序列化 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

  6. Leetcode 之Evaluate Reverse Polish Notation(41)

    很简单的一道题,定义一个栈保留操作数,遇操作符则弹出运算即可. bool isOperator(string &op) { //注意用法 && string("+-* ...

  7. 详解java中的TreeSet集合

    TreeSet是实现Set接口的实现类.所以它存储的值是唯一的,同时也可以对存储的值进行排序,排序用的是二叉树原理.所以要理解这个类,必须先简单理解一下什么是二叉树. 二叉树原理简述 假如有这么一个集 ...

  8. 4:django url

    一个干净的,优雅的URL 方案是一个高质量Web 应用程序的重要细节. 这节我们来看看django是如何做到干净优雅的url的 1:Django如何处理一个请求 通过ROOT_URLCONF决定根UR ...

  9. html,获取iframe的window,document,自定事件与iframe通信

      获取iframe的window对象js代码如下.注意:一定要在文档加载完成之后,才能获取到 var Iframe=document.getElementById("script" ...

  10. Html Css  练习

    一.  取消a链接的下划线 <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...