发现最多有8个限制位置,可以以此为基础DP和容斥。

$f_{i,j}=f_{i-1,j}\times (cnt_j-i+1)+\sum_{k\subset j} f_{i-1,k}$

$cnt_j$表示当限制状态为j时i有多少个可行位置。

这样DP只能保证所有题设位置全部是局部最小值,但不保证其它位置不会变成局部最小值,容斥解决。

$O(DFS*8nm*2^8)$

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int mod=;
int dx[]={,,,-,,,-,,-},dy[]={,,,,-,,-,-,};
int n,m,ans,l,f[][<<],cnt[<<],vis[][],a[][];
char ch[][]; int dp(){
memset(f,,sizeof(f));
memset(cnt,,sizeof(cnt));
int top=;
rep(i,,n) rep(j,,m) if (ch[i][j]=='X')
a[++top][]=i,a[top][]=j;
for (int S=; S<(<<top); S++){
memset(vis,,sizeof(vis));
rep(i,,top) if (~S&(<<(i-))) vis[a[i][]][a[i][]]=;
rep(i,,n) rep(j,,m){
bool flag=;
rep(l,,) if (vis[i+dx[l]][j+dy[l]]) { flag=; break; }
if (!flag) cnt[S]++;
}
}
f[][]=;
rep(i,,n*m) for (int j=; j<(<<top); j++){
f[i][j]=(f[i][j]+1ll*f[i-][j]*max(cnt[j]-i+,))%mod;
rep(k,,top) if (j&(<<(k-)))
f[i][j]=(f[i][j]+f[i-][j^(<<(k-))])%mod;
}
return f[n*m][(<<top)-];
} void dfs(int x,int y,int t){
if (y==m+){ dfs(x+,,t); return; }
if (x==n+){ ans=(ans+dp()*(t&?-:))%mod; return; }
dfs(x,y+,t);
bool flag=;
rep(i,,) if (ch[x+dx[i]][y+dy[i]]=='X') { flag=; break; }
if (!flag) ch[x][y]='X',dfs(x,y+,t+),ch[x][y]='.';
} int main(){
freopen("bzoj2669.in","r",stdin);
freopen("bzoj2669.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,,n) scanf("%s",ch[i]+);
rep(i,,n) rep(j,,m) if (ch[i][j]=='X')
rep(k,,) if (ch[i+dx[k]][j+dy[k]]=='X') { puts(""); return ; }
dfs(,,); printf("%d\n",(ans+mod)%mod);
return ;
}

[BZOJ2669][CQOI2012]局部最小值(容斥+状压DP)的更多相关文章

  1. bzoj2669[cqoi2012]局部极小值 容斥+状压dp

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 774  Solved: 411[Submit][Status ...

  2. ARC 093 F Dark Horse 容斥 状压dp 组合计数

    LINK:Dark Horse 首先考虑1所在位置. 假设1所在位置在1号点 对于此时剩下的其他点的方案来说. 把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案. 可以得到 1在任 ...

  3. bzoj3812 主旋律 容斥+状压 DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3812 题解 考虑对于图的联通性的 DP 的一般套路:总方案 - 不连通的方案. 那么我们只需要 ...

  4. Comet OJ - Contest #7 C 临时翻出来的题(容斥+状压)

    题意 https://www.cometoj.com/contest/52/problem/C?problem_id=2416 思路 这里提供一种容斥的写法(?好像网上没看到这种写法) 题目要求编号为 ...

  5. 【题解】CQOI2012局部最小值

    上课讲的一道题,感觉也挺厉害的~正解是容斥 + 状压dp.首先我们容易发现一共可能的局部最小值数量是十分有限的,最多也只有 \(8\) 个.所以我们可以考虑状压. 建立出状态 \(f[i][j]\) ...

  6. BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...

  7. 【bzoj2669】[cqoi2012]局部极小值 容斥原理+状压dp

    题目描述 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任 ...

  8. HDU5731 Solid Dominoes Tilings 状压dp+状压容斥

    题意:给定n,m的矩阵,就是求稳定的骨牌完美覆盖,也就是相邻的两行或者两列都至少有一个骨牌 分析:第一步: 如果是单单求骨牌完美覆盖,请先去学基础的插头dp(其实也是基础的状压dp)骨牌覆盖 hiho ...

  9. ARC093F Dark Horse 【容斥,状压dp】

    题目链接:gfoj 神仙计数题. 可以转化为求\(p_1,p_2,\ldots,p_{2^n}\),使得\(b_i=\min\limits_{j=2^i+1}^{2^{i+1}}p_j\)都不属于\( ...

随机推荐

  1. 【NOIP】提高组2012 同余方程

    [算法]扩展欧几里德算法 [题解]学完扩欧就可以随便水了... 转化为不定方程ax-by=1. 因为1且题目保证有解,所以方程有唯一解. 紫书曰:同余方程的一个解其实指的是一个同余等价类. 所以满足x ...

  2. POJ 2431 Expedition (优先队列+贪心)

    题目链接 Description A group of cows grabbed a truck and ventured on an expedition deep into the jungle. ...

  3. import学习

    一.import  as     import socket, os, regex模块导入时可以使用 as 关键字来改变模块的引用对象名字: import os as system //当多个引入时  ...

  4. oracle中有关表的操作

    在Oracle中查看所有的表: select * from tab/dba_tables/dba_objects/cat; 看用户建立的表 : select table_name from user_ ...

  5. python基础===成员访问__len__()和__getitem__()

    class A: def __init__(self,*args): self.name = arg pass def __len__(self): return len(self.name) a = ...

  6. java===java基础学习(13)---this,static(静态变量和静态方法)的使用

    package dog; public class PersonAndDog { public static void main(String[] args) { Dogs da_huang = ne ...

  7. [How to]如何通过xib来自定义UIViewController

    代码:https://github.com/xufeng79x/CreateControllerByXib 1.简介 UIViewController实例可以通过代码.storyborad或者xib方 ...

  8. 欢迎访问新博客aiyoupass.com

    新博客基本搭建好了,欢迎访问.aiyoupass.com

  9. html,图片上传预览,input file获取文件等相关操作

    input file常用方法: var obj=document.getElementById("upimage"); var file=obj.files[0];//获取文件数据 ...

  10. three.js、webGL、canvas区别于关联

    canvas是html5新定义的一个标签,用于做图形容器 webgl要依赖canvas运行. three.js是以webgl为基础的库,封装了一些3D渲染需求中重要的工具方法与渲染循环.