Trucking

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1692    Accepted Submission(s): 587

Problem Description
A certain local trucking company would like to transport some goods on a cargo truck from one place to another. It is desirable to transport as much goods as possible each trip. Unfortunately, one cannot always use the roads in the shortest route: some roads may have obstacles (e.g. bridge overpass, tunnels) which limit heights of the goods transported. Therefore, the company would like to transport as much as possible each trip, and then choose the shortest route that can be used to transport that amount.

For the given cargo truck, maximizing the height of the goods transported is equivalent to maximizing the amount of goods transported. For safety reasons, there is a certain height limit for the cargo truck which cannot be exceeded.

 
Input
The input consists of a number of cases. Each case starts with two integers, separated by a space, on a line. These two integers are the number of cities (C) and the number of roads (R). There are at most 1000 cities, numbered from 1. This is followed by R lines each containing the city numbers of the cities connected by that road, the maximum height allowed on that road, and the length of that road. The maximum height for each road is a positive integer, except that a height of -1 indicates that there is no height limit on that road. The length of each road is a positive integer at most 1000. Every road can be travelled in both directions, and there is at most one road connecting each distinct pair of cities. Finally, the last line of each case consists of the start and end city numbers, as well as the height limit (a positive integer) of the cargo truck. The input terminates when C = R = 0.
 
Output
For each case, print the case number followed by the maximum height of the cargo truck allowed and the length of the shortest route. Use the format as shown in the sample output. If it is not possible to reach the end city from the start city, print "cannot reach destination" after the case number. Print a blank line between the output of the cases.
 
Sample Input
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 10
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 4
3
1
1 2 -1 100
1 3 10
0 0
 
Sample Output
Case 1:
maximum height = 7
length of shortest route = 20
 
Case 2:
maximum height = 4
length of shortest route = 8
 
Case 3:
cannot reach destination
 
Source
 
Recommend
gaojie   |   We have carefully selected several similar problems for you:  2722 2433 2923 2482 2377 
 

一口血喷在了屏幕上...

题目不难而且我的初始思路是对的,开始觉得数据不大没想用二分求高度而已,而且没用二分时间差不大,一倍多。

最后检查了几次,wa了好几次,才发现是没有跳出 0 0!!还以为二分又写错了= =

用C写的邻接表比vector快点。

最短路+枚举高度:

 //140MS    600K    1953 B    C++
#include<iostream>
#include<queue>
#define N 1005
#define inf 0x3fffffff
using namespace std;
struct node{
int v,h,d;
int next;
}edge[*N];
vector<node>V[N];
int d[N];
int vis[N];
int n,s,e;
int head[N],edgenum;
void addedge(int u,int v,int h,int d)
{
edge[edgenum].v=v;
edge[edgenum].h=h;
edge[edgenum].d=d;
edge[edgenum].next=head[u];
head[u]=edgenum++;
}
void spfa(int s,int maxh)
{
for(int i=;i<=n;i++)
d[i]=inf;
memset(vis,,sizeof(vis));
queue<int>Q;
d[s]=;
Q.push(s);
vis[s]=;
while(!Q.empty()){
int u=Q.front();
Q.pop();
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
int h=edge[i].h;
int w=edge[i].d;
if(d[v]>d[u]+w && h>=maxh){
d[v]=d[u]+w;
if(!vis[v]){
Q.push(v);
vis[v]=;
}
}
}
}
}
int main(void)
{
int m,a,b,h,c,k=;
while(scanf("%d%d",&n,&m)!=EOF && (n+m))
{
if(k!=) printf("\n");
memset(head,-,sizeof(head));
for(int i=;i<=n;i++)
V[i].clear();
edgenum=;
for(int i=;i<m;i++){
scanf("%d%d%d%d",&a,&b,&h,&c);
if(h==-) h=inf;
addedge(a,b,h,c);
addedge(b,a,h,c);
}
scanf("%d%d%d",&s,&e,&h);
printf("Case %d:\n",k++);
int ans=inf;
int l=,r=h;
while(l<r){
int mid=(l+r+)>>;
spfa(s,mid);
if(d[e]!=inf){
l=mid;ans=d[e];
}else r=mid-;
}
if(ans!=inf){
printf("maximum height = %d\n",r);
printf("length of shortest route = %d\n",ans);
}else printf("cannot reach destination\n");
}
return ;
}

hdu 2962 Trucking (最短路径)的更多相关文章

  1. hdu 2962 Trucking (二分+最短路Spfa)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS (Java/Others ...

  2. HDU - 2962 Trucking SPFA+二分

    Trucking A certain local trucking company would like to transport some goods on a cargo truck from o ...

  3. HDU 2962 Trucking

    题目大意:给定无向图,每一条路上都有限重,求能到达目的地的最大限重,同时算出其最短路. 题解:由于有限重,所以二分检索,将二分的值代入最短路中,不断保存和更新即可. #include <cstd ...

  4. Trucking(HDU 2962 最短路+二分搜索)

    Trucking Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. Day4 - I - Trucking HDU - 2962

    A certain local trucking company would like to transport some goods on a cargo truck from one place ...

  6. HDU ACM 3790 最短路径问题

    最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  7. hdu 3790 (最短路径问题dijkstra)

    主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起 ...

  8. HDU 2112 HDU Today(最短路径+map)

    HDU Today Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  9. hdu 1688 Sightseeing (最短路径)

    Sightseeing Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. spring源码-自定义标签-4

    一.自定义标签,自定义标签在使用上面相对来说非常常见了,这个也算是spring对于容器的拓展.通过自定义标签的方式可以创造出很多新的配置方式,并且交给容器直接管理,不需要人工太多的关注.这也是spri ...

  2. sphinx生成cakephp文档

    cakephp的文档是用一个叫sphinx程序生成的 这个程序是python写的,所以我们要用sphinx本机必须先装python. 编译过程在Ubuntu下进行,默认Ubuntu已经安装了pytho ...

  3. JavaWeb——JavaWeb开发入门

    一.基本概念 1.1.WEB开发的相关知识 WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. Internet上供外界访问的Web资源分为: 静态web资源( ...

  4. 【廖雪峰老师python教程】——进程与线程

    多进程 操作系统轮流让各个任务交替执行,任务1执行0.01秒,切换到任务2,任务2执行0.01秒,再切换到任务3,执行0.01秒……这样反复执行下去.表面上看,每个任务都是交替执行的,但是,由于CPU ...

  5. Python-3.6 安装pycrypto 2.6

    最近接触公司后台管理系统的开发,其中涉及到加密模块pycrypto. 重点来了!!!!敲黑板!!!! pycrypto在PyCharm中跟其他的模块不一样,pip install pycrypto安装 ...

  6. Struts2文件上传带进度条,虽然不是很完美

    好久没有写东西,最近在做个项目,要用到文件h 传的,以前虽然也做上传,但是总觉得不好用 ,现在和队友合作做了一个带进度条的上传,觉得还行~~和大家分享一下. 首先说一下大概是这样实现的,在我们平时的上 ...

  7. 文件操作---基于python

    # coding:utf-8from time import sleepimport sysreload(sys)sys.setdefaultencoding("utf8")f=o ...

  8. 硬件原理图Checklist检查表(通用版)

    类别 描述 检视规则 原理图需要进行检视,提交集体检视是需要完成自检,确保没有低级问题. 检视规则 原理图要和公司团队和可以邀请的专家一起进行检视. 检视规则 第一次原理图发出进行集体检视后所有的修改 ...

  9. 一步步学敏捷开发:1、敏捷开发及Scrum介绍

    敏捷开发之 历史背景 20世纪60年代:软件作坊,软件规模小,以作坊式开发为主:70年代:软件危机,硬件飞速发展,软件规模和复杂度激增,引发软件危机:80年代:软件过程控制,引入成熟生产制造管理方法, ...

  10. C#语言使用redis

    文章:Redis总结(二)C#中如何使用redis 文章:Redis总结(三)Redis 的主从复制 文章:Redis总结(四)Redis 的持久化