https://www.lydsy.com/JudgeOnline/problem.php?id=1486

https://www.luogu.org/problemnew/show/P3199

题面太鬼畜就不粘了。

这题唯一正确的解法是https://www.luogu.org/blog/user7868/solution-p3199虽然我看不懂。

当然为了AC这道题于是抛弃自己的灵魂写了dfs-spfa结果跑的飞快。

这样的题算是出锅了吧……

简单讲下做法,二分答案,对每条边减去这个答案搜负环,如果存在的话该答案合法,否则不合法。

#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
const dl INF=1e7;
const dl eps=1e-;
const int N=3e3+;
const int M=1e4+;
struct node{
int to,nxt;
dl w;
}e[M];
int cnt,head[N],n,m,sum[N];
bool vis[N],ok;
dl dis[N];
queue<int>q;
inline void add(int u,int v,dl w){
e[++cnt].to=v;e[cnt].w=w;e[cnt].nxt=head[u];head[u]=cnt;
}
void spfa(int u){
vis[u]=;
for(int i=head[u];i&&!ok;i=e[i].nxt){
int v=e[i].to;dl w=e[i].w;
if(dis[v]>=dis[u]+w){
dis[v]=dis[u]+w;
if(vis[v]||ok){ok=;return;}
spfa(v);
}
}
vis[u]=;
}
bool pan(dl delta){
for(int i=;i<=m;i++)e[i].w-=delta;
for(int i=;i<=n;i++)vis[i]=,dis[i]=;
ok=;
for(int i=;i<=n&&!ok;i++)
spfa(i);
for(int i=;i<=m;i++)e[i].w+=delta;
return ok;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int u,v;dl w;
scanf("%d%d%lf",&u,&v,&w);
add(u,v,w);
}
dl l=-INF,r=INF;
while(fabs(r-l)>eps){
dl mid=(l+r)/;
if(pan(mid))r=mid;
else l=mid;
}
printf("%.8lf\n",l);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1486:[HNOI2009]最小圈——题解的更多相关文章

  1. BZOJ1486 HNOI2009 最小圈 【01分数规划】

    BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...

  2. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  3. [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环

    题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...

  4. [HNOI2009]最小圈 题解

    题目大意 给你一个有向图,求出图中环的平均值的最小值 环的平均值定义:环中所有的边权和/环中点数量 思路 看到使平均值最大或最小,可以考虑分数规划 分数规划用于解决一些要让平均值最大或最小的问题 具体 ...

  5. bzoj1486: [HNOI2009]最小圈

    二分+dfs. 这道题求图的最小环的每条边的权值的平均值μ. 这个平均值是大有用处的,求它我们就不用记录这条环到底有几条边构成. 如果我们把这个图的所有边的权值减去μ,就会出现负环. 所以二分求解. ...

  6. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  7. 分数规划(Bzoj1486: [HNOI2009]最小圈)

    题面 传送门 分数规划 分数规划有什么用? 可以把带分数的最优性求解式化成不带除发的运算 假设求max{\(\frac{a}{b},b>0\)} 二分一个权值\(k\) 令\(\frac{a}{ ...

  8. BZOJ1486:[HNOI2009]最小圈(最短路,二分)

    Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Sample Output 3.66666667 Sol ...

  9. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

随机推荐

  1. linux 解压命令大全[转]

    本文转自:  http://www.cnblogs.com/eoiioe/archive/2008/09/20/1294681.html .tar 解包:tar xvf FileName.tar打包: ...

  2. 围绕DOM元素节点的增删改查

    HTML 文档中的所有内容都是节点: 整个文档是一个文档节点 document 每个 HTML 元素是元素节点 element HTML 元素内的文本是文本节点 每个 HTML 属性是属性节点 注释是 ...

  3. 初学Direct X(4)

    初学Direct X(4) 本文学着做出一个如下的小游戏 游戏方式是使用键盘控制红色的Bucket收集蓝色的炸弹 1.酝酿一下 现在我已经掌握: 将位图文件加载到内存 绘制位图到buckbuffer ...

  4. SqlServer的两种插入方式效率对比

    protected void button1_Click(object sender, EventArgs e) { DataTable dtSource = new DataTable(); dtS ...

  5. 机器学习介绍(introduction)-读书笔记-

    一,什么是机器学习 第一个机器学习的定义来自于 Arthur Samuel.他定义机器学习为,在进行特定编程的情况下,给予计算机学习能力的领域.Samuel 的定义可以回溯到 50 年代,他编写了一个 ...

  6. mysql数据库常用操作

    目前最流行的数据库: oracle.mysql.sqlserver.db2.sqline --:单行注释 #:也是单行注释 /* 注释内容*/:多行注释 mysql -uroot -p密码:登录mys ...

  7. 【MySQL解惑笔记】Centos7下卸载彻底MySQL数据库

    彻底卸载Yum安装的MySQL数据库 在我第二章MySQL数据库基于Centos7.3-部署过程中,因为以前安装过其它的版本所以没有卸载干净影响后期安装 一.卸载Centos7自带的Maridb数据库 ...

  8. 幸运的袋子(深度优先遍历(Depth First Search,DFS))

    题目描述 一个袋子里面有n个球,每个球上面都有一个号码(拥有相同号码的球是无区别的).如果一个袋子是幸运的当且仅当所有球的号码的和大于所有球的号码的积. 例如:如果袋子里面的球的号码是{1, 1, 2 ...

  9. Python3 Tkinter-Menu

    1.创建 from tkinter import * root=Tk() menubar=Menu(root) def hello(): print('Hello Menu!') for item i ...

  10. JS设置cookie,删除cookie(引)

    JS设置cookie,删除cookie(引) js设置cookie有很多种方法. 第一种:(这个是w3c官网的代码) <script> //设置cookie function setCoo ...