【以前的空间】bzoj [ZJOI2007]棋盘制作
具体可以去跪《浅谈用极大化思想解决最大子矩形问题》(p.s. 蒟蒻跪了还是很晕,不过想到之前usaco好像是最后一章的一道题……看了下代码顿然醒悟)
也就是如果用o(nm)的方法维护一个极大矩阵?其实很简单,按行处理,维护u[],l[],r[](向上,向左,向右)每一行先预处理处理出这行中每一个点向右能延展多长(right[j]),向左能延展多长(left[j]),然后再开始处理这一行的点,具体做法是比较这个点(i,j)与上行同一列的点(i-1,j)是否可以连在一起,可以的话,那么u[j]++,l[j]=min(left[j],l[j]),r[j]:=min(right[j],r[j]),如果不可以,那么u[j]=1,l[j]=left[j],r[j]=right[j]。记住u[],l[],r[]的作用,他们表示一个如果以这一行为底边,那么包括进j点的最大矩形的形状u[j]*(r[j]+l[j]-1)。然后好像就是这样了吧。
var
map,f:array[..,..]of longint;
left,right,u,l,r:array[..]of longint;
i,j,k,n,m,ans:longint; function min(x,y:longint):longint;
begin
if x>y then exit(y);
exit(x);
end; function max(x,y:longint):longint;
begin
if x>y then exit(x);
exit(y);
end; procedure work1;
var
i,j,k:longint;
begin
ans:=;
for i:= to n do
for j:= to m do begin
if (i=)or(j=) then begin
f[i,j]:=;
continue;
end;
if (map[i-][j]=map[i][j])
or (map[i,j-]=map[i,j])
or (map[i-,j-]<>map[i][j]) then begin
f[i,j]:=;
continue;
end;
f[i,j]:=min(f[i-][j],min(f[i,j-],f[i-,j-]))+;
if f[i,j]>ans then ans:=f[i,j];
end;
writeln(ans*ans);
end; procedure work2;
var
i,j,k:longint;
begin
ans:=;
for i:= to n do begin
left[]:=;
right[m]:=;
for j:= to m do
if map[i,j-]<>map[i,j] then left[j]:=left[j-]+ else left[j]:=;
for j:=m- downto do
if map[i,j+]<>map[i,j] then right[j]:=right[j+]+ else right[j]:=;
for j:= to m do begin
if i= then begin
u[j]:=;
l[j]:=left[j];
r[j]:=right[j];
end
else
if map[i-,j]<>map[i,j] then begin
inc(u[j]);
l[j]:=min(l[j],left[j]);
r[j]:=min(r[j],right[j]);
end
else begin
u[j]:=;
l[j]:=left[j];
r[j]:=right[j];
end;
ans:=max(ans,(r[j]+l[j]-)*u[j]);
end;
end;
writeln(ans);
end; begin
readln(n,m);
for i:= to n do
for j:= to m do
read(map[i,j]);
work1;
work2;
end.
p.s. 其实看了丽洁姐的代码,发现自己真是傻掉了,两问明明是可以并在一起求得嘛,(r[j]+l[j]-1)、u[j]不就是矩形的长和高,那么两者中肯定存在一个短边构成的正方形……
【以前的空间】bzoj [ZJOI2007]棋盘制作的更多相关文章
- bzoj 1057: [ZJOI2007]棋盘制作 单调栈
题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 1019[Submit] ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...
- 【BZOJ 1057】 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的 ...
- BZOJ 1057:[ZJOI2007]棋盘制作(最大01子矩阵+奇偶性)
[ZJOI2007]棋盘制作 时间限制: 20 Sec 内存限制: 162 MB[题目描述]国际象棋是世界上最古老的博 ...
- BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
- BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 1848 Solved: 936 [Submit][Sta ...
- P1169 [ZJOI2007]棋盘制作 && 悬线法
P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...
随机推荐
- 让pip 使用国内镜像源
让python的pip使用 国内镜像 国内源: 清华:https://pypi.tuna.tsinghua.edu.cn/simple 阿里云:http://mirrors.aliyun.com/py ...
- 7、Java并发编程:深入剖析ThreadLocal
Java并发编程:深入剖析ThreadLocal 想必很多朋友对ThreadLocal并不陌生,今天我们就来一起探讨下ThreadLocal的使用方法和实现原理.首先,本文先谈一下对ThreadLoc ...
- package.json中的devDependencies和dependencies有啥区别?
如果你的项目是发布到npm的一个包, 那么这个包的package.json中的dependencies中的依赖是会被下载下来到这个包的node_modules文件夹中的(如果你的项目本身没有这个依赖) ...
- 容器云技术:容器化微服务,Istio占C位出道
在精彩的软件容器世界中,当新项目涌现并解决你认为早已解决的问题时,这感觉就像地面在你的脚下不断地移动.在许多情况下,这些问题很久以前被解决,但现在的云原生架构正在推动着更大规模的应用程序部署,这就需要 ...
- Linux命令应用大词典-第19章 文件系统管理
19.1 mkfs:创建Linux文件系统 19.2 mke2fs:创建ext2.3.4文件系统 19.3 mkfs.ext4:创建ext4文件系统 19.4 mkfs.ext3:创建ext3文件系统 ...
- Linux命令应用大词典-第 15章 文件、目录权限和属性
15.1 chmod:更改文件和目录的模式 15.2 chown:更改文件和目录的用户所有者和组群所有者 15.3 chgrp:更改文件或目录的所属组 15.4 umask:显示和设置文件及目录创建默 ...
- <cerrno>
文件头名称: <cerrno>(errno.h) 文件头描述: 文件内定义了如下的宏 errno 最后一个错误代码 加上其他至少的三个宏常量:EDOM,ERANGE 和EILSEQ 宏定 ...
- lintcode204 单例
单例 单例 是最为最常见的设计模式之一.对于任何时刻,如果某个类只存在且最多存在一个具体的实例,那么我们称这种设计模式为单例.例如,对于 class Mouse (不是动物的mouse哦),我们应 ...
- 凸包算法(Graham扫描法)详解
先说下基础知识,不然不好理解后面的东西 两向量的X乘p1(x1,y1),p2(x2,y2) p1Xp2如果小于零则说明 p1在p2的逆时针方向 如果大于零则说明 p1在p2的顺时针方向 struct ...
- 聊聊、dubbo 找不到 dubbo.xsd 报错
平常在用 Dubbo 的时候,创建 xml 会提示 http://code.alibabatech.com/schema/dubbo/dubbo.xsd 找不到. 大家可以去 https://gith ...