题目描述

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天。旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇。 很幸运地,奶牛们找到了一张详细的城市地图,上面标注了城市中所有L(2 <= L <= 1000)座标志性建筑物(建筑物按1..L顺次编号),以及连接这些建筑物的P(2 <= P <= 5000)条道路。按照计划,那天早上Farmer John会开车将奶牛们送到某个她们指定的建筑物旁边,等奶牛们完成她们的整个旅行并回到出发点后,将她们接回农场。由于大城市中总是寸土寸金,所有的道路都很窄,政府不得不把它们都设定为通行方向固定的单行道。 尽管参观那些标志性建筑物的确很有意思,但如果你认为奶牛们同样享受穿行于大城市的车流中的话,你就大错特错了。与参观景点相反,奶牛们把走路定义为无趣且令她们厌烦的活动。对于编号为i的标志性建筑物,奶牛们清楚地知道参观它能给自己带来的乐趣值F_i (1 <= F_i <= 1000)。相对于奶牛们在走路上花的时间,她们参观建筑物的耗时可以忽略不计。 奶牛们同样仔细地研究过城市中的道路。她们知道第i条道路两端的建筑物 L1_i和L2_i(道路方向为L1_i -> L2_i),以及她们从道路的一头走到另一头所需要的时间T_i(1 <= T_i <= 1000)。 为了最好地享受她们的休息日,奶牛们希望她们在一整天中平均每单位时间内获得的乐趣值最大。当然咯,奶牛们不会愿意把同一个建筑物参观两遍,也就是说,虽然她们可以两次经过同一个建筑物,但她们的乐趣值只会增加一次。顺便说一句,为了让奶牛们得到一些锻炼,Farmer John要求奶牛们参观至少2个建筑物。 请你写个程序,帮奶牛们计算一下她们能得到的最大平均乐趣值。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers: L and P

  • Lines 2..L+1: Line i+1 contains a single one integer: Fi

  • Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

输出格式:

  • Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

输入输出样例

输入样例#1:

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
输出样例#1:

6.00

图论 分数规划 最优比率环

试图确认一下自己还会不会这么个东西

确认的结果是已经不会了(cry)

设一段路程的收益是F,花费是dis,则比率为$\frac{\sum F}{\sum dis}=r$ ,我们要找出最大的r

二分答案r,将每条边的边权修改为 “目的地的收益f - 边长度dis*r”,然后SPFA检查图上是否有负环,有负环则r可以增大。

SPFA找环要用DFS

SPFA 之后记得还原vis[]

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const double eps=1e-;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int v,nxt,w;
double c;
}e[mxn<<];
int hd[mxn],mct=;
void add_edge(int u,int v,int w){
e[++mct].v=v;e[mct].nxt=hd[u];hd[u]=mct;e[mct].w=w;return;
}
bool vis[mxn];
double dis[mxn];
bool SPFA(int u){
vis[u]=;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(dis[v]>dis[u]+e[i].c){
dis[v]=dis[u]+e[i].c;
if(vis[v] || SPFA(v)){
vis[u]=;return ;
}
}
}
vis[u]=;
return ;
}
int n,m;
int f[mxn];
void restore(double r){
for(int i=;i<=mct;i++)
e[i].c=(double)e[i].w*r-f[e[i].v];
return;
}
bool check(){
for(int i=;i<=n;i++)
if(SPFA(i))return ;
return ;
}
int main(){
// freopen("testdata.in","r",stdin);
int i,j;
int u,v,w;
n=read();m=read();
for(i=;i<=n;i++)
f[i]=read();
for(i=;i<=m;i++){
u=read();v=read();w=read();
add_edge(u,v,w);
}
double l=,r=;
while(r-l>eps){
double mid=(l+r)/;
restore(mid);
if(check()){
l=mid;
}else r=mid;
}
printf("%.2f\n",l);
return ;
}

洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows的更多相关文章

  1. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...

  2. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  3. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)

    题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...

  4. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解

    题面 这道题是一道标准的01分数规划: 但是有一些细节可以优化: 不难想到要二分一个mid然后判定图上是否存在一个环S,该环是否满足∑i=1t(Fun[vi]−mid∗Tim[ei])>0 但是 ...

  5. POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows

    一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...

  6. 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...

  7. P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    P2868 [USACO07DEC]观光奶牛Sightseeing Cows [](https://www.cnblogs.com/images/cnblogs_com/Tony-Double-Sky ...

  8. [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  9. Luogu 2868 [USACO07DEC]观光奶牛Sightseeing Cows

    01分数规划复习. 这东西有一个名字叫做最优比率环. 首先这个答案具有单调性,我们考虑如何检验. 设$\frac{\sum_{i = 1}^{n}F_i}{\sum_{i = 1}^{n}T_i} = ...

随机推荐

  1. C++ 学习笔记之 STL 队列

    一.  引言 在算法以及数据结构的实现中,很多地方我们都需要队列(遵循FIFO,先进先出原则). 为了使用队列,我们可以自己用数组来实现队列,但自己写太麻烦不说,并且还很容易出错. 好在C++的STL ...

  2. python学习摘要(2)--基本数据类型

    python申请存储空间是动态的.变量如同指针一样指向存储空间.多个变量会指向同一个存储空间(节省空间).当变量改变时,原来的地址单元并不会马上释放.(引用计数自行回收) c/c++根基性语言,想要什 ...

  3. JXM 监控tomcat 7(含代码

    1.在tomcat的server.xml中加入: <Listener className="org.apache.catalina.mbeans.JmxRemoteLifecycleL ...

  4. IE BHO的IObjectWithSite接口

    Internet Explorer的BHO的对象必须实现IObjectWithSite接口.该接口是IE用来对插件进行管理和通讯的一个接口,其有SetSite和GetSite两个方法,当IE加载和卸载 ...

  5. 关于Axure RP

    Axure RP 是一款专业的原型设计工具 用于快速创建应用软件的线框图.流程图.原型和规格说明文档 贴一张图

  6. 【bzoj3754】Tree之最小方差树 最小生成树

    题目描述 给出一张无向图,求它的一棵生成树,使得选出的所有边的方差最小.输出这个最小方差. 输入 第一行两个正整数N,M 接下来M行,每行三个正整数Ui,Vi,Ci N<=100,M<=2 ...

  7. 【bzoj1700】Problem Solving 解题 dp

    题目描述 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地说,他们有P (1 <= P <= 300) 道题目要做. 他们还离开了农场并且象普通人一 ...

  8. BZOJ5339:[TJOI2018]教科书般的亵渎——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5339 https://www.luogu.org/problemnew/show/P4593 小豆 ...

  9. [Leetcode] longest valid parentheses 最长的有效括号

    Given a string containing just the characters'('and')', find the length of the longest valid (well-f ...

  10. 常见的shell命令总结

    1.查看一个程序是否运行   ps –ef|grep tomcat 查看所有有关tomcat的进程 2.终止线程   kill -9 2222  3.查看文件,包含隐藏文件   ls -al 4.当前 ...