用“倍增法”求最近公共祖先(LCA)
1.最近公共祖先:对于有根树T的两个结点u、v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u、的祖先且x的深度尽可能大。
2.朴素算法:记录下每个节点的父亲,使节点u,v一步一步地向上找父亲,直到找到相同的“祖先”,即是所求的答案,时间复杂度O(n)。
3.优化算法(倍增法):利用二进制的思想,想办法使一步一步向上搜变成以2^k地向上跳。所以定义一个P[][]数组,使p[i][j]表示节点i的2^j倍祖先,因此p[i][0]即为i的父亲。我们可以得到一个递推式p[i][j]=p[p[i][j-1]][j-1]。这样子一个O(NlogN)的预处理(dfs)的 2^k 的祖先。定义一个deep[]数组表示节点深度,先判断是否 deep[u] > deep[v]果是的话就交换一下(保证 u的深度小于 v方便下面的操作)然后把u到与v同深度,同深度以后再把u v同时往上调(dec(j)) 调到有一个最小的j 满足: p[u] [j]!=p[v][j],u,v是在不断更新的 最后把u,v 往上调 (u=p[u,0] v=p [v,0]) 一个一个向上调直到 u= v 这时 u or v就是公共祖先。复杂度:O(logn)
下面给出 LCA 的模板:
输入:第一行:N,M,Q (因为是一棵树,所以M==N-1)
接下来M 行: u, v, c ,表示u到v连一条权值为c的边
接下来Q行:u, v 表示寻求u,v的最近公共祖先,u~v的距离,u~v之间的路径的最大权值
输出:共Q行,对应上述的询问
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn=;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int N,M,Q;
vector<int> to[maxn],cost[maxn];
int p[maxn][],MAX[maxn][],sum[maxn][];
int dep[maxn];
inline void dfs(int root){
for(int i=;i<to[root].size();i++){
int y=to[root][i];
if(y!=p[root][]){
dep[y]=dep[root]+;
p[y][]=root;
MAX[y][]=cost[root][i];
sum[y][]=cost[root][i];
for(int k=;k<=30;k++){
int zu=<<k;
if(zu<=dep[y]){
p[y][k]=p[p[y][k-]][k-];
MAX[y][k]=max(MAX[y][k-],MAX[p[y][k-]][k-]);
sum[y][k]=sum[y][k-]+sum[p[y][k-]][k-];
}
}
dfs(y);
}
}
}
inline void LCA(int x,int y){
int ans1=,ans2=;
if(dep[x]>dep[y]) swap(x,y);
int delta=dep[y]-dep[x];
for(int i=;i<=;i++){
int h=<<i; h=hδ
if(h!=){
ans1+=sum[y][i]; ans2=max(ans2,MAX[y][i]);
y=p[y][i];
}
}
if(x==y){
cout<<x<<" "<<ans1<<" "<<ans2<<endl;
return ;
}
for(int i=;i>=;i--){
if(p[y][i]!=p[x][i]){
ans1+=sum[x][i]; ans1+=sum[y][i];
ans2=max(ans2,MAX[x][i]); ans2=max(ans2,MAX[y][i]);
x=p[x][i]; y=p[y][i];
}
}
ans1+=sum[x][]; ans1+=sum[y][];
ans2=max(ans2,MAX[x][]); ans2=max(ans2,MAX[y][]);
cout<<p[x][]<<" "<<ans1<<" "<<ans2<<endl;
}
int main(){
N=read(); M=read(); Q=read();
for(int i=;i<=M;i++){
int u,v,c;
u=read(); v=read(); c=read();
to[u].push_back(v); to[v].push_back(u);
cost[u].push_back(c); cost[v].push_back(c);
}
p[][]=-; dep[]=;
dfs();
for(int i=;i<=Q;i++){
int u,v;
u=read(); v=read();
LCA(u,v);
}
return ;
}
用“倍增法”求最近公共祖先(LCA)的更多相关文章
- LCA 在线倍增法 求最近公共祖先
第一步:建树 这个就不说了 第二部:分为两步 分别是深度预处理和祖先DP预处理 DP预处理: int i,j; ;(<<j)<n;j++) ;i<n;++i) ) fa[i ...
- 求最近公共祖先(LCA)的各种算法
水一发题解. 我只是想存一下树剖LCA的代码...... 以洛谷上的这个模板为例:P3379 [模板]最近公共祖先(LCA) 1.朴素LCA 就像做模拟题一样,先dfs找到基本信息:每个节点的父亲.深 ...
- 倍增法求lca(最近公共祖先)
倍增法求lca(最近公共祖先) 基本上每篇博客都会有参考文章,一是弥补不足,二是这本身也是我学习过程中找到的觉得好的资料 思路: 大致上算法的思路是这样发展来的. 想到求两个结点的最小公共祖先,我们可 ...
- 最近公共祖先 LCA 倍增算法
树上倍增求LCA LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 ...
- 倍增法求LCA
倍增法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 倍增法是通过一个数组来实现直接找到一个节点的某个祖先,这样我们就可 ...
- 【LCA求最近公共祖先+vector构图】Distance Queries
Distance Queries 时间限制: 1 Sec 内存限制: 128 MB 题目描述 约翰的奶牛们拒绝跑他的马拉松,因为她们悠闲的生活不能承受他选择的长长的赛道.因此他决心找一条更合理的赛道 ...
- 【lhyaaa】最近公共祖先LCA——倍增!!!
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...
- HDU 2586 倍增法求lca
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 最近公共祖先(LCA)的三种求解方法
转载来自:https://blog.andrewei.info/2015/10/08/e6-9c-80-e8-bf-91-e5-85-ac-e5-85-b1-e7-a5-96-e5-85-88lca- ...
随机推荐
- Python捕获异常
一.常见异常 1.语法错误:SyntaxError:invalid syntax (1)案例: (1)解决方法: ①查看代码有没有红色波浪线 ②熟悉python基本语法 2.变量名不存在:NameEr ...
- python之设置小数保留位数
python之设置小数保留位数 test.py: a = [3,4,4,4,6,4] average1 = float(sum(a)/len(a)) average2 =round(average1, ...
- delphi 遇到问题、报错等
解决方法:using Windows
- PHP下SESSION无法跨页传递的解决
修改PHP.ini1.Windows下PHP的session文件保存路径要设置成为一个绝对路径session.save_path = C:\windows\temp2.为temp设置权限,允许User ...
- python基础之练习题(一)
1.执行 Python 脚本的两种方式 python test.py chmod +x test.py && ./test.py 2.简述位.字节的关系 二进制位(bit)是计算机存储 ...
- 借鉴+总结!! mysql 客户端命令行下 查询数据并生成文件导出
方式1:在mysql命令行环境下执行: sql语句+INTO OUTFILE +文件路径/文件名 +编码方式(可选) 例如: select * from user INTO OUTFILE '/ ...
- 原!!win7-64 安装python的 redis客户端库
安装python的redis客户端库 本人系统已装python2.7 利用cmd命令行: 1.cmd-->python -->>>进入python命令下 >>> ...
- 通过文件对照工具Merge数据库
项目分成线下开发版.线上測试版.线上生产版,因此相应有三个数据库. 对于一些静态数据.经常须要同步.改动了线下的开发版本号,同一时候也须要更新线上的測试版和线上生产版数据库,有时候线上的一些数据库改动 ...
- Android开发中string.xml文件的使用
为什么需要把应用中出现的文字单独存放在string.xml文中呢? 一:是为了国际化,Android建议将在屏幕上显示的文字定义在strings.xml中,如果今后需要进行国际化,比如我们开发的应用本 ...
- Linux环境安装nodejs
安装node 去官网下载nodejs 根据下载的文件可以看出它的压缩方式是.xz的方式,所以不能直接使用linux命令tar直接下载. xz -d node-v10.6.0-linux-x64.tar ...