This problem can be solved elegantly using dynamic programming.

We maintain two arrays:

  1. cnt[i][j] --- number of parentheses needed to add within s[i..j] inclusively;
  2. pos[i][j] --- position to add the parenthesis within s[i..j] inclusively.

Then there are three cases:

  1. cnt[i][i] = 1;
  2. If s[i] == s[j], cnt[i][j] = cnt[i + 1][j - 1], pos[i][j] = -1 (no need to add any parenthesis);
  3. If s[i] != s[j], cnt[i][j] = min_{k = i, i + 1, ..., j}cnt[i][k] + cnt[k + 1][j], pos[i][j] = k (choose the best position to add the parenthesis).

After computing cnt and pos, we will print the resulting parentheses recursively.

My accepted code is as follows. In fact, I spent a lot timg on debugging the Wrong Answer error due to incorrect input/output. You may try this problem at this link.

 #include <iostream>
#include <cstdio>
#include <vector>
#include <cstring> using namespace std; #define INT_MAX 0x7fffffff
#define vec1d vector<int>
#define vec2d vector<vec1d > void print(char* s, vec2d& pos, int head, int tail) {
if (head > tail) return;
if (head == tail) {
if (s[head] == '(' || s[head] == ')')
printf("()");
else printf("[]");
}
else if (pos[head][tail] == -) {
printf("%c", s[head]);
print(s, pos, head + , tail - );
printf("%c", s[tail]);
}
else {
print(s, pos, head, pos[head][tail]);
print(s, pos, pos[head][tail] + , tail);
}
} void solve(char* s, vec2d& cnt, vec2d& pos) {
int n = strlen(s);
for (int i = ; i < n; i++)
cnt[i][i] = ;
for (int l = ; l < n; l++) {
for (int i = ; i < n - l; i++) {
int j = i + l;
cnt[i][j] = INT_MAX;
if ((s[i] == '(' && s[j] == ')') || (s[i] == '[' && s[j] == ']')) {
cnt[i][j] = cnt[i + ][j - ];
pos[i][j] = -;
}
for (int k = i; k < j; k++) {
if (cnt[i][k] + cnt[k + ][j] < cnt[i][j]) {
cnt[i][j] = cnt[i][k] + cnt[k + ][j];
pos[i][j] = k;
}
}
}
}
print(s, pos, , n - );
printf("\n");
} int main(void) {
char s[];
while (gets(s)) {
int n = strlen(s);
vec2d cnt(n, vec1d(n, ));
vec2d pos(n, vec1d(n));
solve(s, cnt, pos);
}
return ;
}

[POJ] Brackets Sequence的更多相关文章

  1. [poj P1141] Brackets Sequence

    [poj P1141] Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K   Special Judge Description ...

  2. 区间DP POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29520   Accepted: 840 ...

  3. POJ 题目1141 Brackets Sequence(区间DP记录路径)

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27793   Accepted: 788 ...

  4. POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29502   Accepted: 840 ...

  5. poj 1141 Brackets Sequence 区间dp,分块记录

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 101 ...

  6. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  7. POJ 1141 Brackets Sequence (区间DP)

    Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...

  8. POJ1141 Brackets Sequence

    Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...

  9. 记忆化搜索(DP+DFS) URAL 1183 Brackets Sequence

    题目传送门 /* 记忆化搜索(DP+DFS):dp[i][j] 表示第i到第j个字符,最少要加多少个括号 dp[x][x] = 1 一定要加一个括号:dp[x][y] = 0, x > y; 当 ...

随机推荐

  1. 建立第一个wcf程序

    使用管理员权限启动vs (否者将导致ServiceHost开启失败 权限不足) 1.创建一个空的控制台程序 2.添加程序集引用 System.ServiceModel 3.写入一些代码 如下 usin ...

  2. Quartz.NET 实现定时任务调度

    Quartz.NET Quick Start Guide Welcome to the Quick Start Guide for Quartz.NET. As you read this guide ...

  3. 使用 ConfigurationSection 创建自定义配置节

    我们可以通过用自己的 XML 配置元素来扩展标准的 ASP.NET 配置设置集,要完成这一功能,我们必须实现继承System.Configuration.ConfigurationSection 类来 ...

  4. 关于Unity实现游戏录制功能的思考

    录制无非两种做法,录制操作和录制行为. 录制操作要考虑到随机行为,但其实也可以两者混合.如果随机行为过多,并且随机行为无法用种子复现,可以完全用录制的方式 最后再统一压缩 这里yy的就是录制行为的做法 ...

  5. 【大话QT之十三】系统软件自己主动部署实现方案

    本篇文章是对[大话QT之十二]基于CTK Plugin Framework的插件版本号动态升级文章的补充,在上篇文章中我们阐述的重点是新版本号的插件已经下载到plugins文件夹后应该怎样更新本地正在 ...

  6. 一个简单题,引发的思索 + nyoj 1189

    题目描述:第一行:给你两个数m和n,m表示有m个数,然后下一行输入m个数,每个数只能选择一次,统计共有多少种情况使得所选数的和大于等于n: 解决本题我想到了两种方法,(题目自己想的,先不考虑超时),第 ...

  7. 转载:ffmpeg 音视频合成分割

    http://blog.csdn.net/jixiuffff/article/details/5709976 当然先安装了 gentoo 下一条命令搞定 emerge  ffmpeg 格式转换 (将f ...

  8. 微信小程序2 - 扩展Page参数

    官方默认的Page初始代码为 var option = { /** * 页面的初始数据 */ data: { }, /** * 生命周期函数--监听页面加载 * */ onLoad: function ...

  9. redis info命令中各个参数的含义

    Redis 性能调优相关笔记 2016年09月25日 15:42:04 WenCoding 阅读数:4844更多 个人分类: Redis数据库   info可以使用info [类别]输出指定类别内容i ...

  10. Struts2漏洞

    近日,Struts2曝出2个高危安全漏洞,一个是使用缩写的导航参数前缀时的远程代码执行漏洞,另一个是使用缩写的重定向参数前缀时的开放式重定向漏洞.这些漏洞可使黑客取得网站服务器的“最高权限”,从而使企 ...