Principal Component Analysis(PCA)

概念

  1. 去中心化(零均值化): 将输入的特征减去特征的均值, 相当于特征进行了平移, \[x_j - \bar x_j\]
  2. 归一化(标准化): 将输入的特征减去特征的均值, 得到的差在除以特征的标准差, \[{{x_j-\bar x_j}\over{std(x_j)}}\]在进行PCA之前, 一定要进行零均值化或者标准化

用途

  1. 数据压缩(Data Compression)
  2. 数据可视化(Data Visualization)
  3. 提高算法执行效率

PCA实现步骤

  1. 数据零均值化或者标准化
  2. 计算样本矩阵的协方差矩阵Covariance, \[\Sigma={1\over{m}}\sum_{i=1}^{m} x^{(i)}x^{(i)T}\]
  3. 计算协方差矩阵的特征向量eigenvectors, \[[U, S, V] = svd(sigma)\]U即为特征向量矩阵
  4. 选择保留的特征, \[Ureduce = U(:, 1:k)\]
  5. 将Ureduce转为样本, \(Z = Ureduce^TX\)

数据还原

  1. 将被PCA处理过的数据尽可能的还原成原始数据
  2. 按照数学公式应该为\(X^{(i)}_{approx} = (Ureduce^T)^{-1}Z^{(i)}\), 但是实际中, 采用估计的, \(X^{(i)}_{approx}=UreduceZ^{(i)}\)

PCA实现补充

  • 如何选择k变量, 即保留的特征数量

    • 设k从1开始递增迭代到PCA算法中
    • 还原数据得到\(X_{approx}\)
    • 比较\[{{{1\over{m}}\sum_{i=1}^m(x^{(i)}-x^{(i)}_{approx})^2}\over{{1\over{m}}\sum_{i=1}^mx^{(i)T}x^{(i)}}}\le0.01\]
    • 如果小于0.01, 则表示当k取\(\hat k\)时, 我们保留了原始数据的99%

什么时候考虑PCA

  • 在一开始处理数据的时候, 应该尽量使用原始数据, 当是在不行的时候再使用PCA处理

Principal Component Analysis(PCA)的更多相关文章

  1. Principal Component Analysis(PCA) algorithm summary

    Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...

  2. (4)主成分分析Principal Component Analysis——PCA

    主成分分析Principal Component Analysis 降维除了便于计算,另一个作用就是便于可视化. 主成分分析-->降维--> 方差:描述样本整体分布的疏密,方差越大-> ...

  3. [zz] Principal Components Analysis (PCA) 主成分分析

    我理解PCA应该分为2个过程:1.求出降维矩阵:2.利用得到的降维矩阵,对数据/特征做降维. 这里分成了两篇博客,来做总结. http://matlabdatamining.blogspot.com/ ...

  4. PCA(Principal Component Analysis)主成分分析

    PCA的数学原理(非常值得阅读)!!!!   PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...

  5. 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理

    0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...

  6. Andrew Ng机器学习公开课笔记–Principal Components Analysis (PCA)

    网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Compo ...

  7. 主成分分析(principal components analysis, PCA)——无监督学习

    降维的两种方式: (1)特征选择(feature selection),通过变量选择来缩减维数. (2)特征提取(feature extraction),通过线性或非线性变换(投影)来生成缩减集(复合 ...

  8. Sparse Principal Component Analysis via Rotation and Truncation

    目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...

  9. 《principal component analysis based cataract grading and classification》学习笔记

    Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...

随机推荐

  1. Crystal Report保留小数位

    If IsNull({DECL_INV_ITEM_I.DECLEAR_NO}) Or Trim({DECL_INV_ITEM_I.DECLEAR_NO}) = "" Then &q ...

  2. Spring MVC 基本配制

    WEB.XML 文件中的配制: <?xml version="1.0" encoding="UTF-8"?> <web-app id=&quo ...

  3. 自己动手设计并实现一个linux嵌入式UI框架(设计)

    看了"自己动手设计并实现一个linux嵌入式UI框架"显然没有尽兴,因为还没有看到庐山真面目,那我今天继续,先来说说,我用到了哪些知识背景.如:C语言基础知识,尤其是指针.函数指针 ...

  4. Entity Framework 高性能 泛型缓存+动态Lambda

    前言:自学CSharp挺长时间的了,这是我第一编博客,跟大家分享一下.如有不足地方请多多包涵,也欢迎大家提出更好的意见,下面开始进入正题. 一.泛型缓存 1.概念:1.泛型(泛型也是一种推断类型,从而 ...

  5. cesium编程入门(七)3D Tiles,模型旋转

    cesium编程入门(七)3D Tiles,模型旋转 上一节介绍了3D Tiles模型的位置移动,和贴地的操作,这一节来聊一聊模型的旋转, 参考<WebGl编程指南>的第四章 假设在X轴和 ...

  6. solr7.4 centos7安装

    环境:centos7.JDK1.8.solr 自带Jetty启动 一.安装JDK1.8环境 1.下载JDK jdk-8u172-linux-x64.rpm 下载地址:http://www.oracle ...

  7. C#面向对象二

    1.方法的定义 概念:对象的动态特征就是方法(静态特征是属性),方法表示此对象可以做什么. 类型:实例方法,静态方法,(构造方法,多态时会用到抽象方法和虚方法) 2.注意事项 访问修饰符:默认priv ...

  8. 爬虫开发8.scrapy框架之持久化操作

    今日概要 基于终端指令的持久化存储 基于管道的持久化存储 今日详情 1.基于终端指令的持久化存储 保证爬虫文件的parse方法中有可迭代类型对象(通常为列表or字典)的返回,该返回值可以通过终端指令的 ...

  9. 逃生(反向topo)

    逃生 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status De ...

  10. CSS单行超长溢出如何处理?表格某一行某一列超长如何处理?

    表格某一行某一列超长 截取一部分 并增加...效果 增加titile ======================================================== <td t ...