首先根据样例或者自己打表大概可以知道,对于询问k,答案不会超过k<<1,那么我们就可以二分答案,求当前二分的值内有多少个数不是完全平方数的倍数,这样就可以了,对于每个二分到的值x,其中完全平方数的倍数的个数为Σmiu(i)*(n/(i*i)),原理就是容斥,但是根据莫比乌斯反演应该也是能推出来的(我没推出来)。

  反思:开始莫比乌斯函数筛错了,后来的时候没用longlong,导致二分的时候int溢出了,这样就死循环了,找了半天错。

/**************************************************************
Problem: 2440
User: BLADEVIL
Language: C++
Result: Accepted
Time:1164 ms
Memory:2456 kb
****************************************************************/ //By BLADEVIL
#include <cstdio>
#include <iostream>
#include <cmath>
#define maxn 50010 using namespace std; long long mindiv[maxn],prim[maxn],miu[maxn]; void prepare()
{
miu[]=;
for (long long i=;i<=;i++)
{
if (!mindiv[i])
{
prim[++prim[]]=i;
miu[i]=-;
}
for (long long j=;j<=prim[]&&prim[j]*i<=;j++)
{
mindiv[i*prim[j]]=prim[j];
if (!(i%prim[j]))
{
miu[i*prim[j]]=;
break;
}
miu[i*prim[j]]=-miu[i];
}
}
} long long calc(long long x)
{
long long tot=,t;
for (long long i=;i<=sqrt(x);i=t+)
{
t=x/(x/(i*i)); t=sqrt(t);
//printf("%d %d\n",i,t);
tot+=(miu[t]-miu[i-])*(x/(i*i));
//printf("%d\n",tot);
//printf("%d %d\n",miu[t],miu[i-1]);
}
return tot;
} int main()
{
prepare();
for (long long i=;i<=;i++) miu[i]+=miu[i-];
//printf("%d",calc(1));
//for (long long i=1;i<=100;i++) printf("%d ",miu[i]);
long long task;
scanf("%lld",&task);
while (task--)
{
long long l=1ll,r,n,ans;
scanf("%lld",&n);
r=n<<;
while (l<=r)
{
long long mid=(l+r)>>;
//printf("%d %d %d\n",l,r,mid);
if (calc(mid)>=n)
{
ans=mid;
r=mid-1ll;
} else l=mid+1ll;
//printf("%d %d %d\n",l,r,mid);
}
printf("%lld\n",ans);
}
return ;
}

bzoj 2440 容斥原理的更多相关文章

  1. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  2. bzoj 2440 (莫比乌斯函数)

    bzoj 2440 完全平方数 题意:找出第k个不是完全平方数的正整数倍的数. 例如 4  9  16  25 36什么的 通过容斥原理,我们减去所有完全数  4有n/4个,但是36这种会被重复减去, ...

  3. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  4. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  5. BZOJ 2440 完全平方数(莫比乌斯-容斥原理)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2440 题意:给定K.求不是完全平方数(这里1不算完全平方数)的倍数的数字组成的数字集合S ...

  6. BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第K个没有平方因子的数 思路:首先,可以二分数字,然后问题就转变成x以内有多少无平方因 ...

  7. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  8. 【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数 ...

  9. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

随机推荐

  1. LR脚本编写时的几个小技巧

    参数化空值 如上图所示,当参数化时某个值需要为空值(非空格),直接在参数化文件中空一行/格即可,虽然Parameter List界面上没有显示空的那一行,但并不影响取值. 手工日志跟踪 lr_set_ ...

  2. 【Docker 命令】 - search 命令

    docker search : 从Docker Hub查找镜像 语法 docker search [OPTIONS] TERM OPTIONS说明: --automated :只列出 automate ...

  3. Windows2008安装启用无线网卡

    昨天给本子换了系统来着,本来想法是好的,想在本子上安装Hyper-v来搭建多平台VPS,这样的话就能玩多个系统了,对于我自己来说对娱乐没啥兴趣,扯多了,正文 笔记本安装什么都很顺利,但是无线网卡把我难 ...

  4. Python2爬虫获取的数据存储到MySQL中时报错"Incorrect string value: '\\xE6\\x96\\xB0\\xE9\\x97\\xBB' for column 'new' at row 1"的解决办法

    由于一直使用python3进行编码,在使用Python2时,将爬虫数据连接数据库进行存储时,出现如上的报错,经查资料 是数据库编码问题. 如下转自:http://www.cnblogs.com/liu ...

  5. 【Maven】Snapshot和Release版本的区别

    Snapshot版本代表不稳定.尚处于开发中的版本,快照版本. Release版本则代表稳定的版本,发行版本. 什么时候用Snapshot版本? 依赖库中的jar正处于开发的阶段,会被经常被更新,这种 ...

  6. [STL] vector基本用法

    vector的数据安排以及操作方式,与array非常相似.两者的唯一区别在于空间的运用的灵活性.array是静态空间,一旦配置了就不能改变.vector是动态空间,随着元素的加入,它的内部机制会自行扩 ...

  7. RT-thread内核之消息队列

    一.消息队列控制块:在include/rtdef.h中 #ifdef RT_USING_MESSAGEQUEUE /** * message queue structure */ struct rt_ ...

  8. javabean 参数收集 设置属性 设置不同级别的域对象的属性 默认存储在pagecontext中

    javabean 参数收集  设置属性 设置不同级别的域对象的属性  默认存储在pagecontext中

  9. csrf漏洞攻击手段和影响详解

    针对web应用安全中csrf漏洞两种典型的攻击方式:即输入和执行,这种简单模式下的攻击手段以及中途包含确认页面的攻击方法. 图解什么是csrf漏洞 我们先进行约束,比如存在csrf漏洞的网站叫webA ...

  10. BZOJ4871 Shoi2017摧毁“树状图”(树形dp)

    设f[i][0/1/2/3/4/5]表示i子树中选一条链不包含根/i子树中选一条链包含根但不能继续向上延伸/i子树中选一条链可以继续向上延伸/选两条链不包含根/选两条链包含根但不能继续向上延伸/选两条 ...