[BZOJ3203] [SDOI2013]保护出题人(二分+凸包)
[BZOJ3203] [SDOI2013]保护出题人(二分+凸包)
题面
题面较长,略
分析
对于第i关,我们算出能够打死前k个个僵尸的最小能力值,再取最大值就可以得到\(y_i\).
前j-1个僵尸到门的距离为\(x_i+(i-j+1) \times d\),血量为\(sum[i]-sum[j]\),因此
\]
这个方程没法用一般的斜率优化来转移,但我们注意到除法很像斜率的形式,实际上是\((x_i+i \times d,sum_i)\)和\(((j+1)\times d,sum_j)\)之间的斜率
那么问题就转化成,给出一个定点\((x_i+i \times d,sum_i)\),求一个点\(((j+1)\times d,sum_j)\),使得这两点间斜率最大
显然备选的点应该在一个斜率单调递增凸壳上。那么我们可以像斜率优化那样维护一个凸壳。找斜率最大点显然可以三分,但还有更简单的方法。注意到斜率最大点下方的点到定点的向量,和凸壳上相邻点的向量的叉积为负。我们只要找到x坐标最小,且叉积为正的点即可,直接二分答案。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 100000
#define eps 1e-6
using namespace std;
int n;
double d;
struct Vector{
double x;
double y;
Vector(){
}
Vector(double _x,double _y){
x=_x;
y=_y;
}
friend Vector operator + (Vector p,Vector q){
return Vector(p.x+q.x,p.y+q.y);
}
friend Vector operator - (Vector p,Vector q){
return Vector(p.x-q.x,p.y-q.y);
}
};
typedef Vector point;
double cross(Vector p,Vector q){
return p.x*q.y-p.y*q.x;
}
double slope(point p,point q){
return (p.y-q.y)/(p.x-q.x);
}
double a[maxn+5],x[maxn+5];
double suma[maxn+5];
point s[maxn+5];
int bin_search(int l,int r,point k){
int ans=1;
int mid;
while(l<=r){
mid=(l+r)>>1;
if(cross(s[mid+1]-s[mid],k-s[mid])<=eps){
ans=mid;
r=mid-1;
}else l=mid+1;
}
return ans;
}
int main(){
scanf("%d %lf",&n,&d);
for(int i=1;i<=n;i++){
scanf("%lf %lf",&a[i],&x[i]);
suma[i]=suma[i-1]+a[i];
}
int top=0;
double ans=0;
s[++top]=point(d,0); //((0+1)*d,suma[0])
for(int i=1;i<=n;i++){
int best=bin_search(1,top,point(x[i]+i*d,suma[i]));//找到斜率最大的点
double val=slope(point(x[i]+i*d,suma[i]),s[best]);
ans+=val;
point newp=point((i+1)*d,suma[i]);//插入新的可行点
while(top>1&&cross(s[top]-s[top-1],newp-s[top-1])<=eps) top--;
s[++top]=newp;
}
printf("%.0f\n",ans);
}
[BZOJ3203] [SDOI2013]保护出题人(二分+凸包)的更多相关文章
- 【BZOJ3203】[Sdoi2013]保护出题人 二分+凸包
[BZOJ3203][Sdoi2013]保护出题人 Description Input 第一行两个空格隔开的正整数n和d,分别表示关数和相邻僵尸间的距离.接下来n行每行两个空格隔开的正整数,第i + ...
- [BZOJ3203][SDOI2013]保护出题人(凸包+三分)
https://www.cnblogs.com/Skyminer/p/6435544.html 先不要急于转化成几何模型,先把式子化到底再对应到几何图形中去. #include<cstdio&g ...
- [bzoj3203][Sdoi2013]保护出题人
人生第一道三分?... 把进攻序列里的前i只僵尸看成一个点,横坐标是第i只僵尸到达的时间,纵坐标是这i只僵尸的血量总和..就是说植物必须在这段时间内输出这些伤害..那么单位时间的输出伤害就是斜率了. ...
- BZOJ3203 SDOI2013保护出题人(三分)
给a做一个前缀和,那么现在每次所查询的就是(sn-sk)/(bn+nd-(k+1)d)的最大值.这个式子可以看成是(bn+nd,sn)和((k+1)d,sk)所成直线的斜率. 脑补一条直线不断减小斜率 ...
- 【洛谷 P3299】 [SDOI2013]保护出题人 (凸包,三分,斜率优化)
题目链接 易得第\(i\)关的最小攻击力为\(\max_{j=1}^i\frac{sum[i]-sum[j-1]}{x+d*(i-j)}\) 十分像一个斜率式,于是看作一个点\(P(x+d*i,sum ...
- 洛谷 P3299 [SDOI2013]保护出题人 解题报告
P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企 ...
- 【BZOJ3203】保护出题人(动态规划,斜率优化)
[BZOJ3203]保护出题人(动态规划,斜率优化) 题面 BZOJ 洛谷 题解 在最优情况下,肯定是存在某只僵尸在到达重点的那一瞬间将其打死 我们现在知道了每只僵尸到达终点的时间,因为僵尸要依次打死 ...
- [SDOI2013]保护出题人
题目 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企图攻击铭铭的家.而你作为SDOI2013的参赛者 ...
- 【bzoj3203】[Sdoi2013]保护出题人 凸包+二分
题目描述 输入 第一行两个空格隔开的正整数n和d,分别表示关数和相邻僵尸间的距离.接下来n行每行两个空格隔开的正整数,第i + 1行为Ai和 Xi,分别表示相比上一关在僵尸队列排头增加血量为Ai 点的 ...
随机推荐
- 【NOIP2013模拟】归途与征程
题目 分析 好吧...明显是暴力题. 首先,把A串分成只有小写字母组成的小分串,按顺序存放:A[1].A[2].A[3]--. 对于同构循环串,显然把两个B串合在一起,成为一个新的C串.\(C[i.. ...
- linux运维、架构之路-redis集群
一.介绍 redis cluster 3.0之后的功能,至少需要3(Master)+3(Slave)才能建立集群,是无中心的分布式存储架构,可以在多个节点之间进行数据共享,解决了 ...
- ASCII 、UTF-8、Unicode编码
1.各种编码的由来 1.1.计算机编码的由来 因为计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理.所以只能是用一些数字来表示文本,这就是编码的由来.最早的计算机在设计时采用8个比 ...
- SpringCloud 教程 (五) 断路器监控(Hystrix Dashboard)
一.Hystrix Dashboard简介 在微服务架构中为例保证程序的可用性,防止程序出错导致网络阻塞,出现了断路器模型.断路器的状况反应了一个程序的可用性和健壮性,它是一个重要指标.Hystrix ...
- [CSP-S模拟测试]:big(Trie树+贪心)
题目描述 你需要在$[0,2^n)$中选一个整数$x$,接着把$x$依次异或$m$个整数$a_1~a_m$.在你选出$x$后,你的对手需要选择恰好一个时刻(刚选完数时.异或一些数后或是最后),将$x$ ...
- spring bean.xml
http://blog.csdn.net/lanshengsheng2012/article/details/9011635
- shell 中使用正则表达式
ls | xargs echo | sed 's/.*\(\w\+\)\s\(\w\+\s\)*\1d.*/\1/' 说明 \w\+表示一段连续的字符串 \s\+ 一个或者多个空格 \s* 0个或者多 ...
- 解决 ffmpeg 在avformat_find_stream_info执行时间太长
用ffmpeg做demux,网上很多参考文章.对于网络流,avformt_find_stream_info()函数默认需要花费较长的时间进行流格式探测,那么,如何减少探测时间内? 可以通过设置AVFo ...
- kubernetes-helm程序包管理器(二十)
helm概述 Helm是Kubernetes的包管理器,Helm 让我们能够像 yum 管理 rpm 包那样安装.部署.升级和删除容器化应用. Helm的核心术语: Chart:一个helm程序包,是 ...
- PHP文件和目录操作
目录操作 创建目录:mkdir(目录地址, 权限, 是否递归创建=false); 删除目录:rmdir(目录地址);(仅仅可以删除空目录,不支持递归删除) 移动(改名):rename(旧地址, 新地址 ...