BZOJ 2905: 背单词 AC自动机+fail树+dfs序+线段树
Description
给定一张包含N个单词的表,每个单词有个价值W。要求从中选出一个子序列使得其
中的每个单词是后一个单词的子串,最大化子序列中W的和。
Input
第一行一个整数TEST,表示数据组数。
接下来TEST组数据,每组数据第一行为一个整数N。
接下来N行,每行为一个字符串和一个整数W。
Output
TEST行,每行一个整数,表示W的和的最大值。
数据规模
设字符串的总长度为Len
30.的数据满足,TEST≤5,N≤500,Len≤10^4
100.的数据满足,TEST≤10,N≤20000,Len≤3*10^5
题解:
感觉很多 AC 自动机的套路都是将 $trie$ 和 $fail$ 树结合,然后在 $fail$ 树上维护一些东西.
对于本题,首先可以排除掉那些权值小于等于 $0$ 的字符串(出题人是认真的吗?)
构建出来所有单词的 $fail$ 树后,依次枚举每一个字符串,记该字符串在 $trie$ 树中终止节点为 $end(i)$.
那么,如果该单词包含了之前的一个单词,那么后缀就可能来自 $trie$ 树中根节点到该点.
依次枚举这条路径上的点,查询这条路径上在节点在 $fail$ 树对应的 $dfs$ 序上查询一下最大值.
而所有这些值的极大值就是 $i$ 为最后一个串的答案.
考虑 $i$ 可以对后面哪些串有贡献:就是 $fail$ 树中 $i$ 子树内的所有点,这个用线段树维护 $dfs$ 序即可.
#include <cstdio>
#include <queue>
#include <map>
#include <algorithm>
#include <cstring>
#define N 300002
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int T,cas;
struct Seg {
#define lson (now<<1|1)
#define rson (now<<1)
struct Node {
int tag;
}t[N<<2];
void update(int l,int r,int now,int L,int R,int v) {
if(l>=L&&r<=R) {
t[now].tag=max(t[now].tag, v);
return;
}
int mid=(l+r)>>1;
if(L<=mid) update(l,mid,lson,L,R,v);
if(R>mid) update(mid+1,r,rson,L,R,v);
}
int query(int l,int r,int now,int p,int pre) {
pre=max(pre, t[now].tag);
if(l==r) return pre;
int mid=(l+r)>>1;
if(p<=mid) return query(l,mid,lson,p,pre);
else return query(mid+1,r,rson,p,pre);
}
#undef lson
#undef rson
}seg;
struct Node {
int f, ch[27];
}t[N];
queue<int>q;
char str[N];
int n,tot,tim,edges,w[N],endpos[N],hd[N],nex[N],to[N],dfn[N],size[N];
void addedge(int u,int v) {
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
void dfs(int u) {
dfn[u]=++tim,size[u]=1;
for(int i=hd[u];i;i=nex[i]) dfs(to[i]), size[u]+=size[to[i]];
}
int insert() {
int len=strlen(str+1),i,rt=0;
for(i=1;i<=len;++i) {
if(!t[rt].ch[str[i]-'a']) t[rt].ch[str[i]-'a']=++tot;
rt=t[rt].ch[str[i]-'a'];
}
return rt;
}
void build() {
int i,j;
for(i=0;i<27;++i) if(t[0].ch[i]) q.push(t[0].ch[i]);
while(!q.empty()) {
int u=q.front();q.pop();
for(i=0;i<27;++i) {
int p=t[u].ch[i];
if(!p) {
t[u].ch[i]=t[t[u].f].ch[i];
continue;
}
t[p].f=t[t[u].f].ch[i];
q.push(p);
}
}
}
void solve() {
int i,j;
scanf("%d",&n);
for(i=1;i<=n;++i) {
scanf("%s%d",str+1,&w[i]);
if(w[i]>0) endpos[i]=insert();
}
build();
for(i=1;i<=tot;++i)
addedge(t[i].f,i);
dfs(0);
int answer=0;
for(i=1;i<=n;++i) {
if(w[i]<=0) continue;
int p=endpos[i],re=0;
while(p) re=max(re, seg.query(1,tim,1,dfn[p],0)), p=t[p].f;
re+=w[i];
answer=max(answer, re);
seg.update(1,tim,1,dfn[endpos[i]],dfn[endpos[i]]+size[endpos[i]]-1,re);
}
printf("%d\n",answer);
memset(hd,0,sizeof(hd)), memset(endpos,0,sizeof(endpos)), memset(t,0,sizeof(t));
tot=tim=edges=0;
memset(seg.t,0,sizeof(seg.t));
}
int main() {
// setIO("input");
scanf("%d",&T);
for(cas=1;cas<=T;++cas) solve();
return 0;
}
BZOJ 2905: 背单词 AC自动机+fail树+dfs序+线段树的更多相关文章
- BZOJ2434 [Noi2011]阿狸的打字机(AC自动机 + fail树 + DFS序 + 线段树)
题目这么说的: 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现,这个打字机是这样工作的: 输入小 ...
- BZOJ4551[Tjoi2016&Heoi2016]树——dfs序+线段树/树链剖分+线段树
题目描述 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下 两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均 ...
- BZOJ 3172: [Tjoi2013]单词 [AC自动机 Fail树]
3172: [Tjoi2013]单词 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 3198 Solved: 1532[Submit][Status ...
- BZOJ2905: 背单词 AC自动机+fail树+线段树
$zjq$神犇一眼看出$AC$自动机 $Orz$ 直接就讲做法了 首先对每个串建出$AC$自动机 将$fail$树找到 然后求出$dfs$序 我们发现一个单词 $S_i$是$S_j$的子串当且仅当$S ...
- 【BZOJ2905】背单词 fail树+DFS序+线段树
[BZOJ2905]背单词 Description 给定一张包含N个单词的表,每个单词有个价值W.要求从中选出一个子序列使得其中的每个单词是后一个单词的子串,最大化子序列中W的和. Input 第一行 ...
- AC自动机fail树上dfs序建线段树+动态memset清空
题意:http://acm.hdu.edu.cn/showproblem.php?pid=4117 思路:https://blog.csdn.net/u013306830/article/detail ...
- bzoj 1782: [Usaco2010 Feb]slowdown 慢慢游【dfs序+线段树】
考虑每头牛到达之后的影响,u到达之后,从1到其子树内的点需要放慢的都多了一个,p为u子树内点的牛ans会加1 用线段树维护dfs序,每次修改子树区间,答案直接单点查询p即可 #include<i ...
- BZOJ 3172 [Tjoi2013]单词 AC自动机Fail树
题目链接:[http://www.lydsy.com/JudgeOnline/problem.php?id=3172] 题意:给出一个文章的所有单词,然后找出每个单词在文章中出现的次数,单词用标点符号 ...
- DFS序+线段树(bzoj 4034)
题目链接 题目就不多说了. 本题目,可以用dfs序+线段树做:题目给定了一棵树,树上节点告诉了权值.我们可以先将这棵树进行dfs将一棵树变成线性结构:如图 变成这样后,然后就可以用线段树. 操作1:也 ...
随机推荐
- Linux 磁盘卷扩容
首先识别磁盘,成功之后会显示在/dev下 [root@oracle01 ~]# fdisk /dev/sda ## /dev/sda为通过fdisk -l 查看到的物理磁盘(第一行) Welcome ...
- 布隆过滤器(Bloom Filter)原理以及应用
应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等. 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的 ...
- PTA(Basic Level)1047.编程团体赛
编程团体赛的规则为:每个参赛队由若干队员组成:所有队员独立比赛:参赛队的成绩为所有队员的成绩和:成绩最高的队获胜. 现给定所有队员的比赛成绩,请你编写程序找出冠军队. 输入格式: 输入第一行给出一个正 ...
- [转帖]英特尔的 ME 或侵犯 Minix3 的自由软件许可证
英特尔的 ME 或侵犯 Minix3 的自由软件许可证 [日期:2017-12-11] 来源:Linux公社 作者:非非然 [字体:大 中 小] https://www.linuxidc.com/L ...
- python装饰器的原理
装饰器的原理就是利用<闭包函数>来实现,闭包函数的原理就是包含内层函数的return和外层环境变量:
- Redis数据库连接
1.建立maven项目pox.xml导入依赖包 <dependency> <groupId>io.lettuce</groupId> <artifactId& ...
- java-selenium三种等待方式
方式1: 线程等待:Thread.sleep(xxxx) 只要在case中加入sleep就会强制等待设置的时间后才会执行之后的命令,这种等待一般适用于调试脚本的时候. java代码 //等待3秒 Th ...
- Luogu P3520 [POI2011]SMI-Garbage
题目 把要变边权的边拿出来找欧拉回路就行了.正确性显然,因为一条边经过两次相当于对欧拉回路度数的奇偶性没有影响. 然后把一个个小环输出即可,具体的我也不知道怎么输,题目没讲清楚,我按着题解的来的. # ...
- 线性基求交(线段树)--牛客第四场(xor)
题意: 给你n个基,q个询问,每个询问问你能不能 l~r 的所有基都能表示 x . 思路: 建一颗线性基的线段树,up就是求交的过程,按照线段树区间查询的方法进行check就可以了. #define ...
- luogu题解 UVA1615 【Highway】
题目链接: https://www.luogu.org/problemnew/show/UVA1615 分析: 首先这里的距离是欧几里得距离而不是曼哈顿距离. 然后我们对于每个点,求出在公路上保持D范 ...