2018.03.29 python-pandas transform/apply 的使用
#一般化的groupby方法:apply
df = pd.DataFrame({'data1':np.random.rand(5),
'data2':np.random.rand(5),
'key1':list('aabba'),
'key2':['one','two','one','two','one']})
print(df)
#print(df.groupby('key1').apply(lambda x:x.describe()))
#apply直接运算其中的函数
#这里是匿名函数,直接描述分组后的统计量 def f_df1(d,n):
return(d.sort_index()[:n]) #返回排序后的前n行数据
def f_df2(d,k1):
return(d[k1])#返回分组后表的k1列,结果为series,层次化索引
print(df.groupby('key1').apply(f_df1,2),'\n')#引入自己创建的函数,注意书写格式,f_df1的第一个参数默认df 第二个参数,2的形式
print(df.groupby('key1').apply(f_df2,'data2'))
#直接运行f_df函数
#参数直接写在后面,也可以写为:.apply(f_df,n=2)
结果:
data1 data2 key1 key2
0 0.253473 0.731034 a one
1 0.531445 0.061414 a two
2 0.733180 0.122293 b one
3 0.550177 0.115940 b two
4 0.101753 0.510581 a one
data1 data2 key1 key2
key1
a 0 0.253473 0.731034 a one
1 0.531445 0.061414 a two
b 2 0.733180 0.122293 b one
3 0.550177 0.115940 b two key1
a 0 0.731034
1 0.061414
4 0.510581
b 2 0.122293
3 0.115940
Name: data2, dtype: float64
# 数据分组转换 .transform
import numpy as np
import pandas as pd
df = pd.DataFrame({'data1':np.random.rand(5),
'data2':np.random.rand(5),
'key1':list('aabba'),
'key2':['one','two','one','two','one']})
print(df)
k_mean = df.groupby('key1').mean()
print(k_mean)
print(pd.merge(df,k_mean,left_on = 'key1',right_index = True).add_prefix('mean_'))#.add_profix('mean_'):增添前缀
print('------')
#通过分组,合并,得到一个包含均值的Dataframe 以key1位分组的列均值 print(df.groupby('key2').mean())#按照key2分组求均值
print(df.groupby('key2').transform(np.mean))
#data1,data2每个位置的元素取对应分组列的均值
#字符串不能进行计算
结果:
data1 data2 key1 key2
0 0.845365 0.411704 a one
1 0.300226 0.411719 a two
2 0.476632 0.628493 b one
3 0.985675 0.304024 b two
4 0.418804 0.229940 a one
data1 data2
key1
a 0.521465 0.351121
b 0.731153 0.466258
mean_data1_x mean_data2_x mean_key1 mean_key2 mean_data1_y mean_data2_y
0 0.845365 0.411704 a one 0.521465 0.351121
1 0.300226 0.411719 a two 0.521465 0.351121
4 0.418804 0.229940 a one 0.521465 0.351121
2 0.476632 0.628493 b one 0.731153 0.466258
3 0.985675 0.304024 b two 0.731153 0.466258
------
data1 data2
key2
one 0.580267 0.423379
two 0.642951 0.357872
data1 data2
0 0.580267 0.423379
1 0.642951 0.357872
2 0.580267 0.423379
3 0.642951 0.357872
4 0.580267 0.423379
2018.03.29 python-pandas transform/apply 的使用的更多相关文章
- 2018.03.27 python pandas merge join 使用
#2.16 合并 merge-join import numpy as np import pandas as pd df1 = pd.DataFrame({'key1':['k0','k1','k2 ...
- 2018.03.29 python-matplotlib 图表生成
'''Matplotlib -> 一个python版的matlab绘图接口,以2D为主,支持python,numpy,pandas基本数据结构,高效图标库''' import numpy as ...
- 2018.03.29 python-pandas 数据读取
#数据读取# read_table,read_csv,read_excel #读取普通分隔数据:read_table #可以读取txt,csv import os import pandas as p ...
- 2018.03.29 python-pandas 数据透视pivot table / 交叉表crosstab
#透视表 pivot table #pd.pivot_table(data,values=None,index=None,columns=None, import numpy as np import ...
- 2018/03/29 每日一个Linux命令 之 ping
ping 用于测试两及其网络是否通 主要用于检测网络是否通畅. -- 具体语法 ping [-dfnqrRv][-c<完成次数>][-i<间隔秒数>][-I<网络界面&g ...
- Python pandas快速入门
Python pandas快速入门2017年03月14日 17:17:52 青盏 阅读数:14292 标签: python numpy 数据分析 更多 个人分类: machine learning 来 ...
- Python pandas & numpy 笔记
记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: impo ...
- 【VSCode】Windows下VSCode编译调试c/c++【更新 2018.03.27】
--------– 2018.03.27 更新--------- 便携版已更新,点此获取便携版 已知BUG:中文目录无法正常调试 用于cpptools 0.15.0插件的配置文件更新 新的launch ...
- python & pandas链接mysql数据库
Python&pandas与mysql连接 1.python 与mysql 连接及操作,直接上代码,简单直接高效: import MySQLdb try: conn = MySQLdb.con ...
随机推荐
- php函数nl2br的反函数br2nl 将html中的br换行符转换为文本输入中的换行符
下面这几个方法将能够帮你解决这个问题. PHP版将html中的<br />换行符转换为文本框中的换行符: 代码如下: function br2nl($text){ return preg_ ...
- php晚了8小时 PHP5中的时间相差8小时的解决办法
php页面顶部加一句date_default_timezone_set("Asia/Shanghai");或者直接在php.ini设置date.timezone=Asia/Shan ...
- GitHub上一些有趣的开源项目[持续更新]
TheAlgorithms/C-Plus-Plus 用C++实现了常见的算法,如排序算法,查找算法,以及一些常见的数据数据结构,如链表,二叉树. 链接:https://github.com/TheAl ...
- 十一、S3C2440 裸机 — GPIO
11.1 GPIO 介绍 11.1.1 GPIO 管脚 GPIO 即是输入输出端口,S3C2440A 包含了 130 个多功能输入/输出口引脚并且它们为如下显示的八个端口: 端口 A(GPA):25 ...
- typedef int(init_fnc_t) (void)的理解
typedef int(init_fnc_t) (void); 这个就是一个取别名的过程. 我们通常情况下会如下使用 typedef :typedef int MyInt;MyInt a; 这个时候我 ...
- 【POJ2486】Apple Tree
题目大意:给定一棵 N 个节点的有根树,点有点权,边权均为1.现允许从根节点出发走 K 步,求可以经过的点权之和最大是多少. 题解:可以将点权看作是价值,将可以走的步数看作是重量,则转化成了一个树上背 ...
- chrome获取页面element的xPath
chrome真的是强大的工具 1.在chrome打开的页面点击F12,进入开发者模式 2.点击弹出的开发者工具左上角的跟踪箭头,再点击需要跟踪的页面元素,html程序定位到元素在程序中位置 3.选中的 ...
- java数据结构--array与ArrayList的区别
ArrayList 内部是由一个array 实现的. 如果你知道array 和 ArrayList 的相似点和不同点,就可以选择什么时候用array 或者使用ArrayList , array 提供 ...
- springboot 在idea中实现热部署
SpringBoot的web项目,在每一次修改了java文件或者是resource的时候,都必须去重启一下项目,这样的话浪费了很多的时间,实现了热部署,在每一次作了修改之后,都会自动的重启 第一步:引 ...
- 全方面了解和学习PHP框架 PHP培训教程
PHP成为最流行的脚本语言有许多原因:灵活性,易用性等等.对于项目开发来说,我们通常需要一个PHP框架来代替程序员完成那些重复的部分.本文,兄弟连将对PHP框架进行全面解析. PHP框架是什么? PH ...