洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)
洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)
标签:题解
阅读体验:https://zybuluo.com/Junlier/note/1329957
题目链接地址:
洛谷P1484 种树
洛谷P3620 [APIO/CTSC 2007]数据备份(各大oj多倍经验)
照例吐槽
两道基本一模一样的题,只是第二道要差分顺便思维稍微向这边转化一下。。。
我觉得这两个题思维很不错啊!很\(Noip\ T2\)的样子。。。
话不多说将题解
贪心+堆优化
肯定一开始想到一个\(O(nk)\)的\(dp\)是吧,发现跑不过又优化不了。。。
那和\(dp\)最相近而且时间复杂度低的算法就是贪心了罗。。。
下面以洛谷P1484 种树为题目来讲,洛谷P3620 [APIO/CTSC 2007]数据备份的话自己\(yy\)改一下就过啦
不用想了,每次直接选最大值肯定是错误的。。。
那怎么办?贪心不是有后悔操作嘛!
我们还是直接贪心选最大的,考虑怎么后悔,是不是与选\(v[i]\)相对的就是选\(v[i-1],v[i+1]\),那么对于一次后悔,我们可以看做选了\(v[i]\)后,\(Ans+=v[i]\),并且后面我们又选了一个\(v[i-1]+v[i+1]-v[i]\),算一下发现最终就是\(Ans+=v[i+1]+v[i-1]\)是吧,所以我们可以考虑直接把\(v[i]\)的值修改了之后可能重新选一遍
那么怎么实现这些操作呢(口糊谁不会。。)
一般这种最大最小加东西删东西的就可以想到堆啦
考虑用一个大根堆来贪心,每次选出一个最大的元素,然后显然我们要把这个元素两边的元素标记为不能选是吧,那就标记一下呗(因为我们会修改\(v[i]\)的值,所以无所顾忌这两个东西是否还存在,有点难理解。。。)
然后我们发现当我们修改了元素的值之后,他影响到的左右是不同的,所以我们还需要一个可以支持动态修改左右元素的数据结构,显然的不就是双向链表嘛。。。
那就做完了
代码
压行永远是看代码的人的噩梦,写代码的人的幸福。。。
洛谷P1484 种树
#include<bits/stdc++.h>
#define il inline
#define rg register
#define ldb double
#define lst long long
#define rgt register int
#define N 500050
using namespace std;
const int Inf=1e9;
il int MAX(rgt x,rgt y){return x>y?x:y;}
il int MIN(rgt x,rgt y){return x<y?x:y;}
il int read()
{
int s=0,m=0;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')m=1;ch=getchar();}
while( isdigit(ch))s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
return m?-s:s;
}
int n,K;lst Ans;
int v[N],le[N],ri[N],vis[N];
struct NODE{int id,w;};
priority_queue<NODE> H;
bool operator<(const NODE&a,const NODE&b){return a.w<b.w;}
int main()
{
n=read(),K=read();
for(rgt i=1;i<=n;++i)
{
v[i]=read(),le[i]=i-1,ri[i]=i+1;
H.push((NODE){i,v[i]});
}
for(rgt i=1,l,r;i<=K;++i)
{
while(!H.empty()&&vis[H.top().id])H.pop();
rg NODE tmp=H.top();H.pop();if(tmp.w<0)break;
Ans+=tmp.w,l=le[tmp.id],r=ri[tmp.id];
v[tmp.id]=v[l]+v[r]-v[tmp.id];
ri[le[l]]=ri[l],le[ri[l]]=le[l],le[l]=ri[l]=0;
ri[le[r]]=ri[r],le[ri[r]]=le[r],le[r]=ri[r]=0;
vis[l]=vis[r]=1,H.push((NODE){tmp.id,v[tmp.id]});
}return printf("%lld\n",Ans),0;
}
洛谷P3620 [APIO/CTSC 2007]数据备份
需要注意的是:因为变成了最小值,所以边界可能会减出负数,所以处理下边界。。。
#include<bits/stdc++.h>
#define il inline
#define rg register
#define ldb double
#define lst long long
#define rgt register int
#define N 100050
using namespace std;
const int Inf=1e9;
il int MAX(rgt x,rgt y){return x>y?x:y;}
il int MIN(rgt x,rgt y){return x<y?x:y;}
il int read()
{
int s=0,m=0;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')m=1;ch=getchar();}
while( isdigit(ch))s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
return m?-s:s;
}
int n,K;lst Ans;
int v[N],le[N],ri[N],vis[N];
struct LINE{int id,x;};
priority_queue<LINE> H;
bool operator<(const LINE&a,const LINE&b){return a.x>b.x;}
int main()
{
n=read(),K=read();
for(rgt i=1;i<=n;++i)v[i]=read();
for(rgt i=1;i<n;++i)
{
v[i]=v[i+1]-v[i];
le[i]=i-1,ri[i]=i+1;
H.push((LINE){i,v[i]});
}v[0]=v[n]=Inf;
for(rgt i=1,l,r;i<=K;++i)
{
while(!H.empty()&&vis[H.top().id])H.pop();
rg LINE tmp=H.top();H.pop();
Ans+=tmp.x,l=le[tmp.id],r=ri[tmp.id];
v[tmp.id]=v[l]+v[r]-v[tmp.id];
ri[le[l]]=ri[l],le[ri[l]]=le[l],le[l]=ri[l]=0;
ri[le[r]]=ri[r],le[ri[r]]=le[r],le[r]=ri[r]=0;
vis[l]=vis[r]=1,H.push((LINE){tmp.id,v[tmp.id]});
}return printf("%lld\n",Ans),0;
}
洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)的更多相关文章
- 洛谷 P3620 [APIO/CTSC 2007]数据备份 解题报告
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...
- P3620 [APIO/CTSC 2007]数据备份
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...
- P3620 [APIO/CTSC 2007]数据备份[优先队列+贪心]
题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏 ...
- 洛谷P3620 [APIO/CTSC 2007] 数据备份 [堆,贪心,差分]
题目传送门 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽 ...
- 洛谷P3620 [APIO/CTSC 2007] 数据备份
题目 贪心+堆. 一般贪心题用到堆的时候都会存在一种反悔操作,因此这个题也不例外. 首先电缆一定是连接两个相邻的点的,这很好证明,其次一个点只能被一条电缆连接,所以我们通过选这个电缆,不选相邻电缆和选 ...
- 洛谷$P3620\ [APIO/CTSC 2007]$数据备份 贪心
正解:贪心 解题报告: 传送门$QwQ$ $umm$感觉这种问题还蛮经典的,,,就选了某个就不能选另一个这样儿,就可以用堆模拟反悔操作 举个$eg$,如果提出了$a_i$,那就$a_{i-1}$和$a ...
- luogu P3620 [APIO/CTSC 2007]数据备份
luogu 首先如果一条线不是了连接的相邻两个位置一定不优,把它拆成若干连接相邻位置的线.所以现在问题是有\(n\)个物品,选\(k\)个,要求选的位置不能相邻,求最小总和 如果没有选的位置不能相邻这 ...
- [APIO/CTSC 2007]数据备份(贪心+堆)
你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣. ...
- 题解 P3620 【[APIO/CTSC 2007]数据备份】
直接贪心(每次选最小)的话显然不对...样例都过不了... 选两个办公楼的时候,显然不能跨越另一个楼,这样不优... 于是 先把原数列处理成n-1个的数(每一个办公楼和上一个的距离),存在a[]中 题 ...
随机推荐
- PHP入门(四)
1.数组 1. array() 函数用于创建数组 在 PHP 中,有三种类型的数组:数值数组 - 带有数字 ID 键的数组 关联数组 - 带有指定的键的数组,每个键关联一个值 多维数组 - 包含一个或 ...
- 1.关于python 的hmac加密
import base64 import hmac import urllib from hashlib import sha1 expires = b" # 过期时间戳 uuid = 'a ...
- 创建一个Django项目
创建一个django项目: 1. django-admin startproject student_manage(项目名) 2. cd student_manage python manage.p ...
- php将base64字符串转换为图片
昨天用一个js插件 [链接]: http://www.erdangjiade.com/js/910.html 实行了图片裁剪并预览,不过它生产的图片资源是一个base64字符串,不好保存后来在网上找到 ...
- [模板] Kruskal算法 && 克鲁斯卡尔重构树
克鲁斯卡尔重构树 发现没把板子放上来... 现在放一下 克鲁斯卡尔算法的正确性是利用反证法证明的. 简要地说, 就是如果不加入当前权值最小的边 \(e_1\), 那么之后加入的边和这条边会形成一个环. ...
- 如何将python源文件打包成exe文件
PyInstaller是一个十分有用的第三方库,它能够在Windows.Linux.Mac OS X 等操作系统下将 Python 源文件打包,通过对源文件打包,Python 程序可以在没有安装 Py ...
- 【Leetcode】最长回文子串
启发 1)做题前一定要读懂题目 在本题中,首先要清楚地定义回文子串的概念,然后才能设计算法查找它. 如中心扩散法,其主要思想在于找到一个回文子串的定义——两侧互为镜像.进一步分为奇数长度和偶数长度进行 ...
- go语言系列--golang在windows上的安装和开发环境goland的配置
在windows上安装golang软件 golang中国网址为:https://studygolang.com/dl 我的学习选择版本:1.12.5 golang 1.12.5版本更新的内容:gola ...
- Json和XML的一些差别
XML: 扩展标记语言,可以用来标记数据.定义数据类型, 优缺点: 1.格式统一,符合标准: 2.容易与其他系统进行远程交互,数据共享比较方便 3.XML文件庞大,文件格式复杂,传输占带宽,较复杂 J ...
- React用dangerouslySetInnerHTML动态渲染HTML
React用dangerouslySetInnerHTML动态渲染HTML React项目,需要把后台返回的一段html代码在页面上显示 在render获取内容, //在render里获取内容 con ...