[BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆)
[BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆)
题面
给出一个长度为n的序列,选k段长度在L到R之间的区间,一个区间的值等于区间内所有元素之的和,使得k个区间的值之和最大。区间可以相交或包含,但一个区间只能被选1次.
\(n,k,L,R \leq 5 \times 10^5\)
分析
先把区间和转化成前缀和.枚举左端点\(i\),右端点的范围为\([i+L-1,\min(i+R-1,n)]\).在这个区间里面找一个前缀和最大的位置p,答案就是\(sum[p]-sum[i-1]\).静态维护区间最大值位置可以用ST表做。
但是我们要求k个最大区间,只把每个左端点对应的最大答案求出来,可能不够k个。对于每个左端点暴力枚举所有区间,把所有的值加入堆,最后取出k个显然也会超时。
我们维护一个堆(实现上用STL优先队列),堆里面的每个元素都是一个三元组\((i,l,r)\).表示区间左端点在\(i\),右端点在\([l,r]\)内时能取到的最大值.设\(f_m(l,r)\)为\([L,R]\)内的最大值位置,那么我们按照\(sum[f_m(l,r)]-sum[i]\)维护一个最大堆。初始时把\((i,i+L-1,min(i+R-1,n))\)插入堆。每次取堆顶\((i,l,r),\)累加堆顶的值。令\(f_m(l,r)=p\),那次大值对应的区间右端点应该在\([l,p-1]\)或\([p+1,r]\)内。于是弹出堆顶,插入\((i,l,p-1),(i,p+1,r)\)。这样做k次,就可以求出答案。
ST表查询是\(O(1)\)的,故总时间复杂度为\(O((n+k)\log n)\)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define maxn 500000
#define maxlogn 25
using namespace std;
typedef long long ll;
int n,k,L,R;
struct sparse_table{
int log2[maxn+5];
int st[maxn+5][maxlogn+5];
void ini(ll *a,int n){
log2[0]=-1;
for(int i=1;i<=n;i++) log2[i]=log2[i>>1]+1;
for(int i=1;i<=n;i++) st[i][0]=i;
for(int j=1;j<=log2[n]+1;j++){
for(int i=1;i+(1<<(j-1))<=n;i++){
if(a[st[i][j-1]]>a[st[i+(1<<(j-1))][j-1]]) st[i][j]=st[i][j-1];
else st[i][j]=st[i+(1<<(j-1))][j-1];
}
}
}
int query(ll *a,int l,int r){
int k=log2[r-l+1];
if(a[st[l][k]]>a[st[r-(1<<k)+1][k]]) return st[l][k];
else return st[r-(1<<k)+1][k];
}
}T;
int a[maxn+5];
ll sum[maxn+5];
struct node{
int l;
int r;
int i;
inline ll val(){
return sum[T.query(sum,l,r)]-sum[i-1];
}
node(){
}
node(int _i,int _l,int _r){
i=_i;
l=_l;
r=_r;
}
friend bool operator < (node p,node q){
return p.val()<q.val();
}
};
priority_queue<node>q;
int main(){
scanf("%d %d %d %d",&n,&k,&L,&R);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
}
T.ini(sum,n);
for(int i=1;i+L-1<=n;i++){
q.push(node(i,i+L-1,min(i+R-1,n)));
}
ll ans=0;
for(int i=1;i<=k;i++){
node now=q.top();
q.pop();
ans+=now.val();
int p=T.query(sum,now.l,now.r);
if(p>now.l) q.push(node(now.i,now.l,p-1));
if(p<now.r) q.push(node(now.i,p+1,now.r));
}
printf("%lld\n",ans);
}
[BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆)的更多相关文章
- ●BZOJ 2006 NOI 2010 超级钢琴
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2006 题解: RMQ + 优先队列 (+ 前缀) 记得在一两个月前,一次考试考了这个题目的简 ...
- bzoj 2006: [NOI2010]超级钢琴【st表+堆】
设计一个五元组(i,l,r,p,v),表示在以i为左端点,右端点落在(l,r)中的情况下,取最大值v时右端点落在p.把这个五元组塞到优先队列里,以v排序,每次取出一个,然后把这个取过的五元组分成两个( ...
- BZOJ2006:超级钢琴(ST表+堆求前K大区间和)
Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙度 ...
- [NOI 2010]超级钢琴
Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙 的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙 ...
- 【题解】 bzoj2006: [NOI2010]超级钢琴 (ST表+贪心)
题面戳我 Solution 不会,看的题解 Attention 哇痛苦,一直不会打\(ST\)表,我是真的菜啊qwq 预处理 Log[1]=0;two[0]=1; for(int i=2;i<= ...
- 解题:NOI 2010 超级钢琴
题面 WC时候写的题,补一下 做法比较巧妙:记录每个位置和它当前对应区间的左右端点,做前缀和之后重载一下小于号,用优先队列+ST表维护当前最大值.这样贡献就是区间最大值和端点左边差分一下,可以O(1) ...
- 【BZOJ 2006】[NOI2010]超级钢琴 ST
我们先把所有最左端对应的最优右端入堆,eg: z 在[l,r](由题目给出的L,R决定)之间的最优解 y,然后出堆以后,再入堆z,y-1,z,y+1,那么我们只需要用st找最大前缀和就好了(ST是一 ...
- JZOJ 5409 Fantasy & NOI 2010 超级钢琴 题解
其实早在 2020-12-26 的比赛我们就做过 5409. Fantasy 这可是紫题啊 题目大意 给你一个序列,求长度在 \([L,R]\) 区间内的 \(k\) 个连续子序列的最大和 题解 如此 ...
- BZOJ 2006: [NOI2010]超级钢琴 ST表+堆
开始想到了一个二分+主席树的 $O(n\log^2 n)$ 的做法. 能过,但是太无脑了. 看了一下题解,有一个 ST 表+堆的优美解法. 你发现肯定是选取前 k 大最优. 然后第一次选的话直接选固定 ...
随机推荐
- docker容器共享宿主机环境,从而为镜像体积减负
一.背景介绍 响应公司技术发展路线,开发的服务均需要将打成docker镜像,使用docker进行统一管理.可是随着服务越来越多,镜像也越来越多.每次制作镜像的时候都需要将依赖打进容器,这样一个jre的 ...
- python中json对象转换出错解决方法
今天在使用python中的json转换碰到一个问题: 接收一个post的json字符串: s={"username":"admin","passwor ...
- DFS-全排列
void dfs(int x) { if(x>n) { ;i<=n;++i) cout<<a[i]; cout<<endl; return; } ;i<=n; ...
- 洛谷P3948 数据结构——题解
题目传送 感觉这道题秀了我一地的智商... 审题没审好,没确定带修改的操作中询问的次数<=1000,且max和min都是事先给好.不变的.想了半天线段树.分块,却忘了最基础的暴力. 写不出题时先 ...
- 3D Computer Grapihcs Using OpenGL - 13 优化矩阵
上节说过矩阵是可以结合的,而且相乘是按照和应用顺序相反的顺序进行的.我们之前初始化translationMatrix和rotationMatrix的时候,第一个参数都是使用的一个初始矩阵 glm::m ...
- msf生成后门拿shell
0X01简介 这里我本来想学习 msf利用漏洞反弹shell的 但是 没有靶机....等找了靶机在弄吧 kali 172.18.5.118 靶机 172.18.5.240 先尝试能不能ping通 好 ...
- [CSP-S模拟测试]:maze(二分答案+最短路)
题目传送门(内部题88) 输入格式 第一行两个数$n,m$.第二行四个数$sx,sy,tx,ty$.分别表示起点所在行数.列数,终点所在行数.列数.接下来$n$行,每行$m$个数,描述迷宫.最后一行一 ...
- phpstorm的下载激活及定制使用和设置
1.下载地址: 链接:https://pan.baidu.com/s/19PbZnzq0x7grgBge-iHI3w&shfl=sharepset 提取码:dnte 2.激活码获取:http ...
- linux inotify 监控文件系统事件
https://blog.csdn.net/cheng_fangang/article/details/41075515
- linux 汇编函数调用
edi第一个参数 esi第二个参数 edx第三个参数 rax保存结果 C++代码如下: char* demo(char* a,int b){ static char* buf=0; if(!buf)b ...