[BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆)

题面

给出一个长度为n的序列,选k段长度在L到R之间的区间,一个区间的值等于区间内所有元素之的和,使得k个区间的值之和最大。区间可以相交或包含,但一个区间只能被选1次.

\(n,k,L,R \leq 5 \times 10^5\)

分析

先把区间和转化成前缀和.枚举左端点\(i\),右端点的范围为\([i+L-1,\min(i+R-1,n)]\).在这个区间里面找一个前缀和最大的位置p,答案就是\(sum[p]-sum[i-1]\).静态维护区间最大值位置可以用ST表做。

但是我们要求k个最大区间,只把每个左端点对应的最大答案求出来,可能不够k个。对于每个左端点暴力枚举所有区间,把所有的值加入堆,最后取出k个显然也会超时。

我们维护一个堆(实现上用STL优先队列),堆里面的每个元素都是一个三元组\((i,l,r)\).表示区间左端点在\(i\),右端点在\([l,r]\)内时能取到的最大值.设\(f_m(l,r)\)为\([L,R]\)内的最大值位置,那么我们按照\(sum[f_m(l,r)]-sum[i]\)维护一个最大堆。初始时把\((i,i+L-1,min(i+R-1,n))\)插入堆。每次取堆顶\((i,l,r),\)累加堆顶的值。令\(f_m(l,r)=p\),那次大值对应的区间右端点应该在\([l,p-1]\)或\([p+1,r]\)内。于是弹出堆顶,插入\((i,l,p-1),(i,p+1,r)\)。这样做k次,就可以求出答案。

ST表查询是\(O(1)\)的,故总时间复杂度为\(O((n+k)\log n)\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define maxn 500000
#define maxlogn 25
using namespace std;
typedef long long ll;
int n,k,L,R;
struct sparse_table{
int log2[maxn+5];
int st[maxn+5][maxlogn+5];
void ini(ll *a,int n){
log2[0]=-1;
for(int i=1;i<=n;i++) log2[i]=log2[i>>1]+1;
for(int i=1;i<=n;i++) st[i][0]=i;
for(int j=1;j<=log2[n]+1;j++){
for(int i=1;i+(1<<(j-1))<=n;i++){
if(a[st[i][j-1]]>a[st[i+(1<<(j-1))][j-1]]) st[i][j]=st[i][j-1];
else st[i][j]=st[i+(1<<(j-1))][j-1];
}
}
}
int query(ll *a,int l,int r){
int k=log2[r-l+1];
if(a[st[l][k]]>a[st[r-(1<<k)+1][k]]) return st[l][k];
else return st[r-(1<<k)+1][k];
}
}T; int a[maxn+5];
ll sum[maxn+5];
struct node{
int l;
int r;
int i;
inline ll val(){
return sum[T.query(sum,l,r)]-sum[i-1];
}
node(){ }
node(int _i,int _l,int _r){
i=_i;
l=_l;
r=_r;
}
friend bool operator < (node p,node q){
return p.val()<q.val();
}
};
priority_queue<node>q;
int main(){
scanf("%d %d %d %d",&n,&k,&L,&R);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
}
T.ini(sum,n);
for(int i=1;i+L-1<=n;i++){
q.push(node(i,i+L-1,min(i+R-1,n)));
}
ll ans=0;
for(int i=1;i<=k;i++){
node now=q.top();
q.pop();
ans+=now.val();
int p=T.query(sum,now.l,now.r);
if(p>now.l) q.push(node(now.i,now.l,p-1));
if(p<now.r) q.push(node(now.i,p+1,now.r));
}
printf("%lld\n",ans);
}

[BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆)的更多相关文章

  1. ●BZOJ 2006 NOI 2010 超级钢琴

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2006 题解: RMQ + 优先队列 (+ 前缀) 记得在一两个月前,一次考试考了这个题目的简 ...

  2. bzoj 2006: [NOI2010]超级钢琴【st表+堆】

    设计一个五元组(i,l,r,p,v),表示在以i为左端点,右端点落在(l,r)中的情况下,取最大值v时右端点落在p.把这个五元组塞到优先队列里,以v排序,每次取出一个,然后把这个取过的五元组分成两个( ...

  3. BZOJ2006:超级钢琴(ST表+堆求前K大区间和)

    Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙度 ...

  4. [NOI 2010]超级钢琴

    Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙 的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙 ...

  5. 【题解】 bzoj2006: [NOI2010]超级钢琴 (ST表+贪心)

    题面戳我 Solution 不会,看的题解 Attention 哇痛苦,一直不会打\(ST\)表,我是真的菜啊qwq 预处理 Log[1]=0;two[0]=1; for(int i=2;i<= ...

  6. 解题:NOI 2010 超级钢琴

    题面 WC时候写的题,补一下 做法比较巧妙:记录每个位置和它当前对应区间的左右端点,做前缀和之后重载一下小于号,用优先队列+ST表维护当前最大值.这样贡献就是区间最大值和端点左边差分一下,可以O(1) ...

  7. 【BZOJ 2006】[NOI2010]超级钢琴 ST

    我们先把所有最左端对应的最优右端入堆,eg: z  在[l,r](由题目给出的L,R决定)之间的最优解 y,然后出堆以后,再入堆z,y-1,z,y+1,那么我们只需要用st找最大前缀和就好了(ST是一 ...

  8. JZOJ 5409 Fantasy & NOI 2010 超级钢琴 题解

    其实早在 2020-12-26 的比赛我们就做过 5409. Fantasy 这可是紫题啊 题目大意 给你一个序列,求长度在 \([L,R]\) 区间内的 \(k\) 个连续子序列的最大和 题解 如此 ...

  9. BZOJ 2006: [NOI2010]超级钢琴 ST表+堆

    开始想到了一个二分+主席树的 $O(n\log^2 n)$ 的做法. 能过,但是太无脑了. 看了一下题解,有一个 ST 表+堆的优美解法. 你发现肯定是选取前 k 大最优. 然后第一次选的话直接选固定 ...

随机推荐

  1. python学习理论

    结论 其实学python这本书 不一定要全部敲一遍 在“”动手试一试“”里面 把这篇学到的东西测试一下就算是掌握了 要在实际工作场景当中使用还需要进一步练习这样做的话 比较好一点 边学边测试 加深掌握 ...

  2. noip模拟题 Market

    题面描述: 数据范围: Solution: 我们发现\(v\)很小,但是\(M\)很大,考虑转化一下一般的背包 我们用\(f[v]\)来表示拿到价值为\(v\)的物品需要付出的最少代价,特别的,当\( ...

  3. Python爬虫黑科技(经验)

    "作为一名爬虫工程师,你最需要关注的,是数据的来源" 原文:https://www.jb51.net/article/90114.htm 霍夫曼编码压缩算法 1.最基本的抓站   ...

  4. Selenium 元素常用操作方法(键盘和鼠标事件)

    一.简单操作 click():点击 send_keys():输入 clear():清空 submit():提交表单 size:返回元素的尺寸 text:获取元素的文本 get_attribute(): ...

  5. xwiki安装部署

    环境介绍 http://aiushtha-mybook.stor.sinaapp.com/xwiki/xwiki%E4%BB%8E%E5%85%A5%E9%97%A8%E5%88%B0%E8%BF%9 ...

  6. [BZOJ2669][CQOI2012]局部极小值:DP+容斥原理

    分析 题目要求有且只有一些位置是局部极小值.有的限制很好处理,但是只有嘛,嗯...... 考虑子集反演(话说这个其实已经算是超集反演了吧还叫子集反演是不是有点不太合适),枚举题目给出位置集合的所有超集 ...

  7. Jar包方式运行web项目

    使用Maven进行打包 在自己的电脑终端中进入到pom.xml文件的目录中执行maven打包.命令为: mvn clean package 1 成功的标志为​上面显示BUILD SUCCESS成功打包 ...

  8. android sp文件一个键值保存多条信息

    之前碰到过这样的问题,sp文件只能够append,或者清空.其实一个键值,通过,分割,或者替代可以实现多条信息的存储.下面是一个举例: package com.ctbri.weather.utils; ...

  9. Python 笔试集(2):你不知道的 Python 整数

    面试题 分别给出下述代码在终端(e.g. IPyhon)中和在程序中的运行结果: a = 256 b = 256 c = 257 d = 257 def foo(): e = 257 f = 257 ...

  10. windows 使用Docker Desktop 使用国内镜像

    ===新增一些比较给力的镜像=== 1.中科大镜像加速地址 https://docker.mirrors.ustc.edu.cn 2.阿里云镜像服务 ========= 原本在配置项中添加了:国内镜像 ...