POJ-3436-ACM Computer Factory(最大流, 输出路径)
链接:
https://vjudge.net/problem/POJ-3436#author=0
题意:
为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想要重新建造一条生产线。 生产线是全自动化的,所以需要机器来组成生产线,给定有多少中种机器,标准ACM用电脑有多少部份,每种机器将什么样的ACM电脑半成品处理成什么样的电脑半成品(对于输入的电脑半成品,每部分有0,1,2三种状态:代表着 0、这部分必须没有我才能处理,1、这部分必须有我才能处理,2、这部分有没有我都能处理。对于输出的电脑半成品有0,1两种状态:代表着0,处理完后的电脑半成品里没有这部分,1、处理完的电脑半成品有这部分),每一个机器每小时可以处理Q个半成品(输入数据中的Qi)。 求组装好的成产线的最大工作效率(每小时最多生成多少成品,成品的定义就是所有部分的状态都是“1”) 第一行输入两个数:一个P代表有P个零件, 一个 N代表有N台机器。 接下来N行,每行第一个数字有Qi,代表 第i个零件每小时能加工的半成品零件个数。然后是2*P个数字,前P个数字是加工前半成品需要满足的条件,后P个数表示加工后的半成品的数量。
思路:
最大流,将不需要零件的机器从源点s连到它一条边,将输出全部零件的机器连到汇点一条边,权值都为无穷大.同时每个机器看成两个点,输入连到输出后的权值是q,在对满足条件的两个机器连一条边,权值为无穷大.
建图完成后,跑最大流即可.
代码:
#include <iostream>
#include <cstdio>
#include <vector>
#include <memory.h>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#include <math.h>
#include <stack>
using namespace std;
typedef long long LL;
const int MAXN = 50+10;
const int INF = 1e9;
struct Edge
{
int from, to, cap;
Edge(int f, int t, int c):from(f), to(t), cap(c){};
};
int Part[MAXN][2][15];//in:0, out:1
int Cap[MAXN];
vector<Edge> edges;
vector<int> G[MAXN];
int Dgree[MAXN], Vis[MAXN];
int Flowf[3000], Flowt[3000], Flowc[3000];
int Map[MAXN*3][MAXN*3];
int p, n;
int s, t;
bool Sto(int node)
{
for (int i = 1;i <= p;i++)
if (Part[node][0][i] == 1)
return false;
return true;
}
bool Tot(int node)
{
for (int i = 1;i <= p;i++)
if (Part[node][1][i] == 0)
return false;
return true;
}
bool IsLink(int a, int b)
{
for (int i = 1;i <= p;i++)
if (Part[a][1][i]+Part[b][0][i] == 1)
return false;
return true;//12, 11, 00, 02
}
void AddEdge(int from, int to, int cap)
{
edges.push_back(Edge(from, to, cap));
edges.push_back(Edge(to, from, 0));
G[from].push_back(edges.size()-2);
G[to].push_back(edges.size()-1);
}
bool Bfs()
{
//构造分层网络
memset(Dgree, -1, sizeof(Dgree));
queue<int> que;
que.push(s);
Dgree[s] = 0;
while (!que.empty())
{
int u = que.front();
que.pop();
for (int i = 0;i < G[u].size();i++)
{
Edge &e = edges[G[u][i]];
if (e.cap > 0 && Dgree[e.to] == -1)
{
que.push(e.to);
Dgree[e.to] = Dgree[u]+1;
}
}
}
return Dgree[t] != -1;
}
int Dfs(int u, int flow)
{
// cout << u << endl;
//flow 流量上线
if (u == t)
return flow;
int res = 0;
for (int i = 0; i < G[u].size() && flow; i++)
{
Edge &e = edges[G[u][i]];
if (e.cap > 0 && Dgree[e.to] == Dgree[u] + 1)
{
int tmp = Dfs(e.to, min(flow, e.cap));
flow -= tmp;
e.cap -= tmp;
res += tmp;
edges[G[u][i] ^ 1].cap += tmp;
}
}
if (res == 0)
Dgree[u] = -1;
return res;
}
int Dinic()
{
int res = 0;
while (Bfs())
res += Dfs(0, INF);
return res;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
while (cin >> p >> n)
{
memset(Map, 0, sizeof(Map));
edges.clear();
for (int i = 0;i <= 2*n+1;i++)
G[i].clear();
s = 0, t = 2*n+1;
for (int i = 1;i <= n;i++)
{
cin >> Cap[i];
for (int j = 1;j <= p;j++)
cin >> Part[i][0][j];
for (int j = 1;j <= p;j++)
cin >> Part[i][1][j];
}
for (int i = 1;i <= n;i++)
{
if (Sto(i))
AddEdge(0, i*2-1, INF);
if (Tot(i))
AddEdge(i*2, t, INF);
}
for (int i = 1;i <= n;i++)
{
for (int j = 1;j <= n;j++)
{
if (i == j)
continue;
if (IsLink(i, j))
AddEdge(i*2, j*2-1, INF);
}
}
for (int i = 1;i <= n;i++)
AddEdge(i*2-1, i*2, Cap[i]);
int res = Dinic();
int cnt = 0;
for (int i = 1;i <= n;i++)
{
for (int j = 0;j < G[i*2-1].size();j++)
{
Edge &e = edges[G[i*2-1][j]];
int l = i, r = e.to/2;
if (e.cap > 0 && e.to != 0 && l != r)
{
Flowf[++cnt] = r;
Flowt[cnt] = l;
Flowc[cnt] = e.cap;
}
}
}
cout << res << ' ' << cnt << endl;
for (int i = 1;i <= cnt;i++)
cout << Flowf[i] << ' ' << Flowt[i] << ' ' << Flowc[i] << endl;
}
return 0;
}
POJ-3436-ACM Computer Factory(最大流, 输出路径)的更多相关文章
- poj 3436 ACM Computer Factory 最大流+记录路径
题目 题意: 每一个机器有一个物品最大工作数量,还有一个对什么物品进行加工,加工后的物品是什么样.给你无限多个初始都是000....的机器,你需要找出来经过这些机器操作后最多有多少成功的机器(111. ...
- Poj 3436 ACM Computer Factory (最大流)
题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...
- POJ 3436 ACM Computer Factory 最大流,拆点 难度:1
题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...
- POJ 3436 ACM Computer Factory (拆点+输出解)
[题意]每台计算机由P个零件组成,工厂里有n台机器,每台机器针对P个零件有不同的输入输出规格,现在给出每台机器每小时的产量,问如何建立流水线(连接各机器)使得每小时生产的计算机最多. 网络流的建图真的 ...
- POJ 3436 ACM Computer Factory (网络流,最大流)
POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...
- POJ - 3436 ACM Computer Factory 网络流
POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...
- POJ 3436 ACM Computer Factory
题意: 为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想 ...
- POJ 3436 ACM Computer Factory(最大流+路径输出)
http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...
- POJ - 3436 ACM Computer Factory(最大流)
https://vjudge.net/problem/POJ-3436 题目描述: 正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...
- kuangbin专题专题十一 网络流 POJ 3436 ACM Computer Factory
题目链接:https://vjudge.net/problem/POJ-3436 Sample input 1 3 4 15 0 0 0 0 1 0 10 0 0 0 0 1 1 30 0 1 2 1 ...
随机推荐
- EDM邮件营销的七个重要参考指标
如何做好EDM邮件营销,已经成为EDM工作人员面临的实际问题.当你发送邮件之前, 你可以先想想:我自己的电子邮件的目标是什么?邮件能否吸引收件人?能带来更多客户吗?无论你的目标是什么,以下的这些指标是 ...
- hdu 4758 (AC自动机)
除了走到哪里,还要加状态表示当前节点和已经匹配的串 #include<iostream> #include<cstdio> #include<string> #in ...
- vue的组件通讯 父传子 -- 子传父-- 兄弟组件的传值 vue的组件传值
首先文字简单撸一下 父子传子 -------首先在父组件上绑定一个属性,在子组件里用props接收,可以是数组或者是对象 子传父 ------在父组件升上自定义一个方法,在子组件里通过this ...
- 阶段3 1.Mybatis_11.Mybatis的缓存_3 mybatis一对一实现延迟加载
不用骨架创建项目 复制一对多的代码src下的代码到我们刚才创建的项目里面 把依赖信息复制过来 这里原来实现的功能是立即加载的功能.sql语句是一次性查询的两个表关联的查询. 调整代码 删除Accoun ...
- 用例a失败,跳过测试用例b和c并标记失败xfail
前言 当用例a失败的时候,如果用例b和用例c都是依赖于第一个用例的结果,那可以直接跳过用例b和c的测试,直接给他标记失败xfail用到的场景,登录是第一个用例,登录之后的操作b是第二个用例,登录之后操 ...
- python实例1-找质数/素数
质数定义:质数(prime number)又称素数.质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数. 示例解决方案1 有很多方法可以解决这个问题,下面是一些例子:这是一个不同的功能分解 ...
- LeetCode.859-伙伴字符串(Buddy Strings)
这是悦乐书的第330次更新,第354篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第200题(顺位题号是859).给定两个字母A和B的小写字母,当且仅当我们可以在A中交换 ...
- 你知道e.g.和i.e.的区别吗?
见 i.e. 是对前面的完全举例,特指 e.g. 则是不完全举例,有可能是...也有可能是...还可能是其他. 注意,i.e. 和 e.g. 第二个点后面都常跟一个逗号.
- [Web 前端] 026 jQuery 初探
目录 1. jQuery 简介 2. jQuery 的简单操作 2.1 jQuery 选择器 2.1.1 简介 2.1.2 基础选择器 2.2 过滤获取 2.3 父子关系获取 3. jQuery 元素 ...
- [转帖]100G QSFP28与CFP,CFP2,CFP4光模块的比较
100G QSFP28与CFP,CFP2,CFP4光模块的比较 https://www.eefocus.com/etulink/blog/17-09/423967_5c520.html 数据中心网络发 ...