BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常
再考虑 $i$ 中至少有一个 $p$ 对 $h(i\times p)$ 的贡献:我们发现无论如何 $d$ 中至少会有 $2$ 个 $p$ 的因子,所有贡献为 $0$ . 这个情况下 $h(i\times p)=-h(t)\times p^3$
#include<bits/stdc++.h>
#define maxn 4020002
#define ll long long
#define M 4000001
using namespace std;
#define O2 __attribute__((optimize("-O2")))
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rd() {int x=0; char c=nc(); while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x;}
void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
freopen(out.c_str(),"w",stdout);
}
int cnt;
bool vis[maxn];
int prime[maxn], mu[maxn];
ll g[maxn],mod=1,sum[maxn];
O2 inline void Init()
{
int i,j;
mu[1]=1;
for(i=1;i<=30;++i) mod=mod*2;
for(i=2;i<=M;++i)
{
if(!vis[i]) prime[++cnt]=i, mu[i]=-1;
for(j=1;j<=cnt&&1ll*prime[j]*i<=M;++j)
{
vis[prime[j]*i]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(i=1;i<=M;++i)
for(j=1;1ll*i*j<=M;++j)
if(mu[j]) g[i*j]+=mu[i]*i, g[i*j]%mod;
for(i=1;i<=M;++i) g[i]=(1ll*g[i]*i+g[i-1]+mod)%mod;
for(i=1;i<=M;++i) sum[i]=(1ll*(i+1)*i/2)%mod;
}
O2 int main()
{
// setIO("input");
Init();
int T,n,m;
T=rd();
while(T--)
{
n=rd(), m=rd();
if(n>m) swap(n,m);
int i,j;
ll re=0;
for(i=1;i<=n;i=j+1)
{
j=min(n/(n/i), m/(m/i));
re=(re + (1ll*sum[n/i]*sum[m/i]*(g[j]-g[i-1])%mod)%mod + mod)%mod;
}
printf("%lld\n",re);
}
return 0;
}
BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常的更多相关文章
- BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法
Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...
- bzoj2693--莫比乌斯反演+积性函数线性筛
推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...
- 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和
只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...
- [模板] 积性函数 && 线性筛
积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- [bzoj] 2694 Lcm || 莫比乌斯反演
原题 定义整数a,b,求所有满足条件的lcm(a,b)的和: 1<=a<=A 1<=b<=B ∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gc ...
- BZOJ 2694: Lcm [莫比乌斯反演 线性筛]
题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd( ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
随机推荐
- Oracle_管理控制文件和日志文件
控制文件: 控制文件在数据库创建时被自动创建,并在数据库发生物理变化时更新.控制文件被不断更新,并且在任何时候都要保证控制文件是可用的.只有Oracle进程才能安全地更新控制文件的内容,所以,任何时候 ...
- ASP.NET MVC Filter过滤机制(过滤器、拦截器)
https://blog.csdn.net/knqiufan/article/details/82413885 本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/ ...
- vue+element-ui国际化(i18n)
1. 下载element-ui和vue-i18n: npm i element-ui --save npm i vue-i18n –save 2. 创建一个 i18n 文件夹, 在main.j ...
- 手机端 ios 浏览器访问报错
原因: ios 隐私模式下 会限制 localstorage 和 sessionstorage 的使用 测试的时候最好看下当前浏览器所处的模式.代码里也要判断 当前是否隐私模式 .告知用户切换模式才能 ...
- Git015--标签管理
Git--标签管理 本文来自于:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/ ...
- Maven仓库存在jar包但依旧提示无法下载
介绍最近服务器的迁移,把原来服务器的地址都更改了,所以私服的地址也改动了,原来项目下载到本地仓库的包,但是重新构建过程中竟然发现依然要提示下载,本地仓库里面明明有包,为什么还要下载? 解决去maven ...
- [Linux] 029 脚本安装包
1. 脚本安装包 脚本安装包并不是独立的软件包类型,常见安装的是源码包 是人为把安装过程写成了自动安装的脚本,只要执行脚本,定义简单的参数,就可以完成安装 非常类似于 Windows 下软件的安装方式 ...
- CentnOS7安装Nginx“No package available”
Nginx相对Apache有轻量级,简洁的优点,算得上Apache的优秀替代品了,但是由于Nginx不在yum的官方源中,因此安装时总会出现失败的现象,只需: yum install epel-rel ...
- luoguP2123 皇后游戏(贪心)
luoguP2123 皇后游戏(贪心) 题目 洛谷题目chuanso 题解 有一篇好题解,我就懒得推式子了,毕竟打到电脑上还是很难的 牛逼题解传送门 code #include<iostream ...
- JSON —— 数据结构
1.什么是 JSON JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式. 易于人阅读和编写 JSON 采用完全独立于语言的文本格式,但是也使用了类似于 C ...